
PREPRIN
T

Do the Test Smells Assertion Roulette and Eager Test Impact
Students’ Troubleshooting and Debugging Capabilities?

Wajdi Aljedaani∗, Mohamed Wiem Mkaouer†, Anthony Peruma‡ and Stephanie Ludi∗
∗University of North Texas. Email{wajdi.aljedaani, Stephanie.Ludi@unt.edu}

†Rochester Institute of Technology. Email{mwmvse@rit.edu}
‡University of Hawaii at Manoa. Email{peruma@hawaii.edu}

Abstract—To ensure the quality of a software system, devel-
opers perform an activity known as unit testing, where they
write code (known as test cases) that verifies the individual
software units that make up the system. Like production code,
test cases are subject to bad programming practices, known as
test smells, that hurt maintenance activities. An essential part
of most maintenance activities is program comprehension which
involves developers reading the code to understand its behavior
to fix issues or update features. In this study, we conduct a
controlled experiment with 96 undergraduate computer science
students to investigate the impact of two common types of test
smells, namely Assertion Roulette and Eager Test, on a student’s
ability to debug and troubleshoot test case failures. Our findings
show that students take longer to correct errors in production
code when smells are present in their associated test cases,
especially Assertion Roulette. We envision our findings supporting
academia in better equipping students with the knowledge and
resources in writing and maintaining high-quality test cases. Our
experimental materials are available online1

Index Terms—Test smells, unit testing, software engineering
education, computer science education, software testing

I. Introduction
An essential activity in ensuring the quality of a software

system is unit testing, where developers write code to verify
the behavior of the implemented system’s production (i.e.,
source) code [35]. By using unit tests, organizations and
project teams automate the discovery of flaws in their system
that would otherwise go unnoticed or consume developer time
[25]. Given this invaluable benefit in improving the overall
quality of a software system, many projects and organizations
mandate that developers write unit tests as part of their
software development process [29], including the adoption of
a test-driven development approach [12].

However, as with production code, test code is also subject
to bad programming practices by developers, known as test
smells [41]. Likewise, similar to code smells, test smells are
also an indicator of deeper problems, such as bad design
or implementation choices in the test suite. Prior research
has shown that test smells negatively impact the system’s
maintainability. Specifically, test smells have been shown to
increase the change- and defect-proneness of the system’s
codebase [38], increase the flakiness of test cases [14], and
negatively impact test code readability and understandability
[41]. Furthermore, developers’ injection of these test smells

1https://wajdialjedaani.github.io/testsmellstd/

ranges from lack of proper testing discipline (i.e., mistakes/-
carelessness and non-removal of debugging code) to testing
knowledge gaps [33].

As described above, through a series of empirical studies
and developer interviews, the research community has shown
that test smells impact a system’s internal quality, thereby
impacting maintenance activities. To further validate these
findings and expand the body of knowledge on test smells,
our study investigates the effect of test smells on code com-
prehension activities. To this extent, we conducted a sizeable
human-based study with undergraduate students enrolled in a
computer science program at a university in North America.

Similar to code smells, there are multiple types of test smells
defined in published literature [3]. However, as this is a human-
based study and involves students, examining each smell in
the test smells catalog is not feasible due to time constraints.
Therefore, in this study, we focus our analysis on only two
smell types– Assertion Roulette and Eager Test. We arrived
at these two smell types by reviewing multiple studies [10],
[24], [33], [39] and comparing the distribution of smell types
that these studies have in common; both of these smell types
frequently occur in the test suites of open-source Java systems.

A. Motivation & Goal

While there exist studies that evaluated the impact of test
smells on the code comprehension capabilities of students,
these studies either involved students writing complete test
cases [8], [9], [13] or evaluating the test suites from large,
well-established open-source systems with which they have
no prior experience [11]. In contrast, as we elaborate in
Section III, our work involves students examining pre-written
test cases corresponding to simplistic use cases and making
updates to the production (i.e., system under test) code to
correct failing test cases. Hence, to a large extent, we eliminate
any influence placed on the student’s cognitive load caused by
understanding (or being overwhelmed by) the overall behavior
and technical design/architecture of a complex and unfamiliar
system. Therefore, the findings from our study are more
closely aligned with the actual impact of test smells on code
comprehension. Furthermore, this study also allows us to
compare our findings against the work by Bai et al. [7], which
states that Assertion Roulette should not be considered a bad
smell for students.

In this study, our goal is to determine the extent to which

ar
X

iv
:2

30
3.

04
23

4v
1

 [
cs

.S
E

]
 7

 M
ar

 2
02

3

PREPRIN
T

the presence of test smells in the test suite impacts a student’s
troubleshooting and debugging capabilities. Specifically, our
work compares the effect that smelly and non-smelly test suites
have on students when tasked with fixing failing test cases by
only correcting defects in the production code of a system
they are familiar with. We theorize that test files exhibiting
test smells cause an increase in code comprehension time than
those without test smells, resulting in students spending more
time on maintenance activities.

B. Contribution

The results of our study show that test smells negatively im-
pact a student’s code comprehension capabilities. Furthermore,
the Assertion Roulette smell causes students to take more time
to address issues in the production code than the Eager Test
smell. Our study highlights the need for academia to invest in
and prioritize teaching students about all types of test smells,
their harmful impact on maintenance activities, and tools that
can be used to automatically detect and eliminate these smells
from the test suite of a software system.

II. Test Smell Definitions & Related Work
This section provides definitions of the two test smell types

(i.e., Assertion Roulette and Eager Test) utilized in our study
and an overview of the related work in this area.

A. Test Smell Definitions

Assertion Roulette. The passing/failing of a test case is deter-
mined by the execution of the assertion method it contains.
These assertion methods allow developers to include an op-
tional textual message indicating the reason for the failure of
the assertion. This smell occurs when a test method contains
two or more assertions without an explanation message. Trou-
bleshooting the failure of a test case becomes challenging as
the developer is unaware of the cause of the failure.
Eager Test. This smell occurs when a test method verifies
multiple functionalities of the production code by invoking
several production methods. This smell makes it hard to un-
derstand the true purpose of the test. Furthermore, it increases
the coupling between the test method and production code,
which, in turn, negatively impacts maintenance.

B. Related Work

Several automated techniques and tools for detecting test
smells have been published in the literature [3]. In addition,
researchers have identified a collection of test smells [21],
while others have concentrated on the effects of test smells
and removal techniques [30]. For example, Van Bladel and
Demeyer suggested eliminating test smells in the context of
refactoring test code [40], and Van Deursen et al. highlighted
harmful test smells and techniques to eliminate them [41]. In
addition, they offered conceptual and technical explanations
for evaluating students’ activity by identifying test smells in
their code and offering test smell-related observations. This
section highlights several prior studies that particularly shaped
our methodology. Next, we divide the related work into two
different aspects of test smell in education: software testing

in education, where we focus on current approaches used to
examine the testing in education; Students’ programming and
testing activities, which focus particularly on unit testing inside
the classroom. Finally, Table I presents a summary of the
systematic analysis studies in the related work.

1) Software Testing in Education

Educators have examined a variety of assessment integration
strategies for computer science courses. For instance, some
researchers instruct students to submit their software tests
and solutions [19], [23], while others involve students in
peer testing [36], [22]. Fraser et al. [20] proposed a Code
Defenders game that is utilized to engage students’ activities
in the test suite. Aniche and colleagues [4] conducted a survey
involving 84 first-year computer science students regarding
the difficulties associated with learning software testing. They
also investigated the errors that were made in the lab work
of 230 students. According to their findings, there are eight
different types of typical errors. These include test coverage,
maintainability of test code, understanding of testing princi-
ples, boundary testing, state-based testing, assertions, mock
objects, and tools.

Previous studies have investigated both the level of quality
of student-written test code [4], [15], [16], [18] and the view-
points of students on unit testing [4], [22]. These studies utilize
several metrics, such as the frequency of defects identified by
student-created test cases and branch coverage. To evaluate
the incremental testing procedures of software development
projects, Kazerouni et al. [28] developed new metrics: the
balance and sequencing of the testing effort. According to
an evaluation conducted by Carver and Kraft [15], students
in the senior year of computer science do not have the
skills necessary to make good use of test-coverage techniques.
These experiments were performed in a classroom setting, and
participants were given grades for their participation.

2) Students’ programming and testing activities

Several approaches [2], [17] have been developed for assess-
ing student-created test suites. Bai et al. [8] studied the impact
of a checklist on the students writing test cases. The students
anticipated that they would develop JUnit tests to check the
functionality of a program that had been implemented to
evaluate the student completeness, effectiveness, and main-
tainability. In recent work, Buffardi and Aguirre-Ayal [13]
analyzed students’ work on testing assignments to examine
their adoption of test smells. The authors also investigated the
relationship between three types of test smells and the test
accuracy of the students’ work. Bai et al. [9] performed an
experimental study to learn how students understand unit test-
ing and what obstacles they face when engaging in unit testing.
Bavota et al. [11] performed a control experiment on students
and industrial developers on six test smells. They execute
software comprehension tasks on test suites with and without
test smells and measure performance using correctness and
time. Participants cannot conduct the necessary maintenance
when this test smell is present. Thus, the smell significantly

PREPRIN
T

TABLE I: Summary of the systematic analysis studies in related work.

Study Year Purpose Evaluation Test Smell Participant # of Participants
TCD, MG, GF, ET, Students 49

[11] 2015 Understanding how test smells is spread in real software systems Experiment LT, AR, IT, SE Developers 12
[20] 2019 Engaging students with software testing in an entertaining way Survey Game experiment Students 123
[13] 2021 Exploring smells exhibited by students first learning how to unit test Unit tests, source code MA, CL Students 246
[9] 2021 Discovering students’ perceptions & challenges when practicing unit testing Survey N/A Students 54
[8] 2022 Assessing the impact of the testing checklist Survey N/A Students 32

Abbreviation of test smells types: (AR) Assertion Roulette, (MG) Mystery Guest, (GF) General Fixture, (ET) Eager Test, (LT) Lazy Test, (IT) Indirect Testing, (SE) Sensitive Equality,
(TCD) Test Code Duplication, (MA) Multiple Assertions, (CL) Conditional Logic.

affects it (bachelor students scored 48% correctness, while
industrial developers scored 42%).

Researchers and educators commonly use test case/suite
success rates to evaluate the quality of student-written source
code [6], [27], [42]. In contrast, students’ productivity is
generally measured in lines of code per hour [5] or work
session [27]. Unfortunately, there has been a lack of focus
on the importance of test smells in the classroom. In a study
similar to ours, Bai et al. [7] examined how the Assertion
Roulette smell affects students’ productivity and conduct while
writing code. The authors employed the Bowling Score Keeper
project, and the student was tasked with writing a Java app to
calculate the score of a single bowling game according to a
set of specifications and JUnit tests.

III. Study Design
The primary objective of this study is to assess to what

extent Assertion Roulette and Eager Test hinder students’
program comprehension. To do so, we evaluate the impact
of these smells’ existence on the debugging process when
students use smelly test files to locate errors. Therefore, our
main Research Question is:

RQ: To what extent do Assertion Roulette and Eager
Test impact the time spent by students in debugging
failing test cases?

By debugging time, we mean the time needed for a student
to troubleshoot a failing test method and fix its corresponding
error in the production method under test. Based on existing
studies, smelly test files hinder program comprehension, i.e.,
we hypothesize that students should take a longer time to
locate an error raised by a smelly test method, as it is harder to
read, in comparison to the time needed to find an error raised
by a non-smelly test method. To address this hypothesis, we
create a controlled experiment where we select one project,
which already contains a unit test suite with 100% path
coverage. Then, we inject errors in production methods, which
are going to be caught by the tests, i.e., for each error injected
into the production code, its corresponding test method is
going to fail. For a set of created errors, the time needed to
debug their failing test methods is expected to take longer
if these test methods are smelly. This can be empirically
validated if, for the same set of errors, the time needed to
debug them would take longer if the test suite is smelly,
in comparison with the debugging time when the same test
suite is not smelly. Since we are interested in comparing the
debugging time, out of a non-smelly test suite (referred to as

Suite N), we create two variants of the same test suite: The
first variant (referred to as Suite A) has the same testing logic
of Suite N, but with test methods infected with the assertion
roulette smell. Similarly, the second variant (referred to as
Suite E) has Suite N’s methods infected with the eager test.
These suites are described as follows:

• Suite N. It encompasses (N)on-Smelly test cases. Each
production method is associated with one or multiple
test methods, testing multiple scenarios and ensuring the
coverage of all the method’s execution paths. We followed
the guidelines by XUnit [31].

• Suite A. We introduced (A)ssertion Roulette smell into
Suite N test cases by testing multiple scenarios, for one
given production method, under the same test method.
This induces a test method with multiple assert state-
ments, covering all the production method’s execution
paths. According to the literature, it hinders comprehen-
sion by making it difficult to determine which assertion
has triggered the test failure [32].

• Suite E. We introduced (E)ager Test smell into Suite
N test cases by testing multiple scenarios, for multiple
production methods, under the same test method. This
induces a test method with multiple assert statements,
covering all the production method’s execution paths.
According to the literature, it hinders comprehension
by making it difficult to determine which method has
triggered the test failure [32].

To ensure each suite contains (or not) the intended test smell
type, we run TS-Detect, one of the popular state-of-the-art test
smell detectors [34], for each suite, as a sanity check.

A. Project Overview

Since we are measuring students’ debugging time, we need
to avoid any bias that can be introduced due to misun-
derstanding the program’s behavior. Therefore, the chosen
application should be intuitive for anyone to understand. For
this purpose, we created a basic calculator application using
Java programming language. The language was chosen to
match students’ familiarity with object-oriented programming
at their level. Similarly, the choice of calculator is driven by
intuitiveness and students’ familiarity with its features under
test. The calculator was designed with eight functions listed
below:

• Summation (Sum): is a production method that takes
as input two variables of type double, and returns their
summation, e.g., 10 + 2 = 12.

PREPRIN
T

TABLE II: Summary of test cases for each category.

of Test Cases
Suite N Suite A Suite EMethod Non-Smelly test Assertion Roulette Earger Test

Summation (Sum) 5 1
Subtraction (Sub) 5 1

Multiplication (Mult) 7 1
Division (Div) 5 1 9

Square Root (SQRT) 5 1
Modulo (Mod) 5 1
Average (Avg) 4 1

Factorial (Fact) 4 1
Total 40 8 9

• Subtraction (Sub): is a production method that takes
as input two variables of type double, and returns their
subtraction, e.g., 10− 2 = 8.

• Multiplication (Mult): is a production method that takes
as input two variables of type double, and returns their
multiplication, e.g., 10× 2 = 20.

• Division (Div): is a production method that takes as input
two variables of type double, and returns their division,
e.g., 10÷ 5 = 2.

• Square Root (SQRT): is a factor that, when multiplied
by itself, equals the original value of the given integer.
A square root is represented by a radical symbol (√)
and can be determined by the value of the power 1

2 of an
integer, e.g.,

√
25 = 5.

• Modulo (Mod): is the signed residue of a division,
which occurs after dividing two numbers. It is computed
by subtracting the divisor from the dividend until the
resulting is less than the divisor, e.g., 5 (mod 2) = 1.

• Average (Avg): is a mathematical operation to compute
the mean of a given set of numbers. It is the ratio of sum
of all numbers in a given set to the number of values
present in the set, e.g., avg of numbers present in set
A = {1,2,3,4,5} can be computed as 1+2+3+4+5

5 = 3.
• Factorial (Fact): is a function that outputs the product of

all positive integers less than or equal to a given positive
integer. It is indicated by an exclamation mark preceding
that integer, e.g., 4! = 24.

B. Test Suites Creation

For each production method, we need to create its corre-
sponding test methods, ensuring 100% path coverage. These
test methods were automatically generated by EvoSuite2 and
labeled as Suite N. Since the generated test methods’ names
are not descriptive, for each test method, we added a comment
to indicate which production method it tests. It is critical for
our experiments to ensure that the mapping between test and
production methods is maintained. Otherwise, the overhead
of students searching for such mappings would inflate the
debugging time. To create Suite A and Suite E, we duplicate
Suite N, and we manually introduce the smells based on their
definitions that we outlined above.

To illustrate how these suites differ, Listing 2 shows 4
test methods from Suite N. Listing 3 shows how test00()

2https://www.evosuite.org/

and test01() (resp. test05 and test06) are merged,
since they are testing the same production summation (resp.
subtraction) method. The merged methods have the assertion
roulette smell, so they belong to Suite A. As for Listing 4,
all methods from Listing 2 are merged into one test method,
constituting the eager test. The merged method has the eager
test smell, so it belongs to Suite E. This process has resulted
in 40 test methods in Suite N, 8 test methods in Suite A, and
9 test methods in Suite E. The count of test methods for each
test suite is summarized in Table II

C. Errors Generation

To create the errors, we used PITest3, a Java mutation testing
framework, to generate faults (or mutations) that are purposely
seeded into the production methods. For a given mutated
production method, if one or many of its corresponding test
method(s) fail(s), then the error is caught. Otherwise, if the
tests pass, then the error is missed. PIT is typically used
to evaluate the quality of tests by the percentage of caught
errors. In our context, we use PIT to generate arbitrary errors
throughout the production methods. Then we selected errors
while making sure each production method would have at least
one error, and the selected errors were all caught by the 3 test
suites.

Figure 1 presents two production methods, i.e., summation
and subtraction, containing two errors. In the sum method,
the summation operation (+) is replaced with the subtraction
operation (-), resulting in a faulty behavior. Likewise, the
subtract operation (-) is replaced with the summation operation
(+), in the diff .

p u b l i c c l a s s C a l c u l a t o r {
p u b l i c double sum (double [] a r r) {

/ / C r e a t i o n o f Array
double sum = 0 ;
f o r (i n t i =0 ; i < a r r . l e n g t h ; i ++){

sum −= a r r [i] ;
}
/ / ad d i ng a l l e l e m e n t s i n an a r r a y
System . o u t . p r i n t l n (” A d d i t i o n : ”+sum) ;
re turn sum ;

}

p u b l i c double s u b t r a c t (double [] a r r) {
/ / C r e a t i o n o f Array
double d i f f = 0 ;
f o r (i n t i = 0 ; i < a r r . l e n g t h ; i ++){

d i f f += a r r [i] ;
}
/ / S u b t r a c t i n g a l l e l e m e n t s i n an a r r a y
System . o u t . p r i n t l n (” S u b t r a c t i o n : ”+

d i f f) ;
re turn d i f f ;

}
}

Listing 1: Example for two production methods with seeded
errors.

3https://pitest.org/

PREPRIN
T

D. Target Course

This experiment has been conducted in an undergraduate
senior-level software engineering course4. Before joining this
course, students have about two years of programming experi-
ence. This provides them with the background to perform the
debugging needed in this experiment. Also, they are familiar
with the process of searching for the root errors in a faulty
code.

p u b l i c c l a s s C a l c u l a t o r E S T e s t ex tends
C a l c u l a t o r E S T e s t s c a f f o l d i n g {
/ / T e s t Cases f o r Sum Method
@Test (t i m e o u t = 4000)
p u b l i c vo id t e s t 0 0 () throws Throwable {

C a l c u l a t o r c a l c u l a t o r 0 = new
C a l c u l a t o r () ;

double [] d o u b l e A r r a y 0 = new double [2] ;
double doub le0 = c a l c u l a t o r 0 . sum (

d o u b l e A r r a y 0) ;
a s s e r t E q u a l s (0 . 0 , double0 , 0 . 0 1) ;

}
@Test (t i m e o u t = 4000)
p u b l i c vo id t e s t 0 1 () throws Throwable {

C a l c u l a t o r c a l c u l a t o r 0 = new
C a l c u l a t o r () ;

double [] d o u b l e A r r a y 0 = new double [2] ;
d o u b l e A r r a y 0 [0] = (− 1 . 0) ;
double doub le0 = c a l c u l a t o r 0 . sum (

d o u b l e A r r a y 0) ;
a s s e r t E q u a l s ((− 1 . 0) , double0 , 0 . 0 1) ;

}
/ / T e s t Cases f o r S u b t r a c t Method
@Test (t i m e o u t = 4000)
p u b l i c vo id t e s t 0 5 () throws Throwable {

C a l c u l a t o r c a l c u l a t o r 0 = new
C a l c u l a t o r () ;

double [] d o u b l e A r r a y 0 = new double [2] ;
double doub le0 = c a l c u l a t o r 0 . s u b t r a c t (

d o u b l e A r r a y 0) ;
a s s e r t E q u a l s (0 . 0 , double0 , 0 . 0 1) ;

}
@Test (t i m e o u t = 4000)
p u b l i c vo id t e s t 0 6 () throws Throwable {

C a l c u l a t o r c a l c u l a t o r 0 = new
C a l c u l a t o r () ;

double [] d o u b l e A r r a y 0 = new double [5] ;
d o u b l e A r r a y 0 [2] = 9 3 . 0 ;
double doub le0 = c a l c u l a t o r 0 . s u b t r a c t (

d o u b l e A r r a y 0) ;
a s s e r t E q u a l s ((− 9 3 . 0) , double0 , 0 . 0 1) ;

}
}

Listing 2: Example of test case source code for Non-test Smell
test suite.

E. Pilot Study

A pilot study is the initial phase of the entire research
protocol and is generally a smaller-scale study that serves to
solidify the main study [26]. Therefore, prior to the primary

4Some details revealing the identity of the course’s institution has been
omitted for double-blind review.

investigation, we conducted a pilot study with four undergrad-
uate students who were later excluded from the controlled
experiment. The goal of the pilot study was to guarantee that
the experiment’s instructions were clear and to establish an
approximate duration for the lab session. Following the pilot
study, we decided to provide all upcoming participants with
documentation on how to set up the programming environ-
ment. Also, we would only allow students to participate in the
experiment when they have their environment ready to avoid
skewing our measurements.

p u b l i c c l a s s C a l c u l a t o r E S T e s t ex tends
C a l c u l a t o r E S T e s t s c a f f o l d i n g {
/ / T e s t Cases f o r Sum Method
@Test (t i m e o u t = 4000)
p u b l i c vo id t e s t 0 0 () throws Throwable {

C a l c u l a t o r c a l c u l a t o r 0 = new
C a l c u l a t o r () ;

double [] d o u b l e A r r a y 0 = new double [2] ;
double doub le0 = c a l c u l a t o r 0 . sum (

d o u b l e A r r a y 0) ;
a s s e r t E q u a l s (0 . 0 , double0 , 0 . 0 1) ;

double [] d o u b l e A r r a y 1 = new double [2] ;
d o u b l e A r r a y 1 [0] = (− 1 . 0) ;
double doub le1 = c a l c u l a t o r 0 . sum (

d o u b l e A r r a y 1) ;
a s s e r t E q u a l s ((− 1 . 0) , double1 , 0 . 0 1) ;

}
/ / T e s t Cases f o r S u b t r a c t Method
@Test (t i m e o u t = 4000)
p u b l i c vo id t e s t 0 1 () throws Throwable {

C a l c u l a t o r c a l c u l a t o r 0 = new
C a l c u l a t o r () ;

double [] d o u b l e A r r a y 0 = new double [2] ;
double doub le0 = c a l c u l a t o r 0 . s u b t r a c t (

d o u b l e A r r a y 0) ;
a s s e r t E q u a l s (0 . 0 , double0 , 0 . 0 1) ;

double [] d o u b l e A r r a y 1 = new double [5] ;
d o u b l e A r r a y 1 [2] = 9 3 ;
double doub le1 = c a l c u l a t o r 0 . s u b t r a c t (

d o u b l e A r r a y 1) ;
a s s e r t E q u a l s ((− 9 3) , double1 , 0 . 0 1) ;

}
}

Listing 3: Example of test case source code for Assertion
Roulette test suite.

F. Procedure

Following the results of the pilot study, we conducted two
sessions: a preparation session and a controlled experiment
session. During the preparation session, we supplied students
with a video tutorial for both Windows and Mac to show them
how to install setup the programming environment on their
computers and run test cases on their IntelliJIDEA5 panels. We
also gave the students written instructions outlining a step-by-
step procedure for installing Java on their systems6. We made
sure all students had their environment ready and knew how

5https://www.jetbrains.com/idea/
6These instructions are included in our replication package

PREPRIN
T

N A E

Legend

N A E

Non-Smelly Test Assertion Roulette Eager Test

N

A E N

A E N

A E N

A E

A EN

Suite N Suite A Suite E

Fig. 1: Students arrangement in the classroom.

to run test cases prior to our experiment. Also, we provided
students with the bug-free version of the project, along with
some test cases from Suite N, as we want to increase student’s
familiarity with the production methods. Students’ familiarity
with the production code is important, as some students may
exercise more effort to read and comprehend source code [43].
Code comprehension is also a noise that we mitigate through
their exposure to the project before the session. The supporting
material related to the current experiment can be accessed
through the link: [1]. Finally, we conducted a presentation
of the calculator project, its features (operations), its source
methods, and the execution of sampled test cases.

The second session was carried out in person to avoid any
collusion. At the start of the controlled experiment session, we
randomly split students into three groups, based on which test
they will be using: N, E, and A. The entire session was 2 hours
(120 minutes) long. The experiment started at the same time
for every student. The task assigned to the students was to
identify and fix the issues raised by the failing test methods in
their corresponding suite. The use of online resources was also
permitted. Students were instructed to submit their updated
code immediately to Canvas7 once they are done fixing the
errors. We chose to use Canvas since students are familiar
with it. We determined debugging time for each student by
examining their submission timestamp on Canvas. Finally, we
shared an online post-survey to gather their feedback about
their debugging experiences. We use this survey to gauge
if students have experienced any difficulties when debugging
their code. It is important to note that students are not aware
of the underlying experiment, i.e., the multiple test suites and
the existence of test smells.

G. Participants

The controlled experiment was carried out in two semesters
and involved 96 undergraduate students. These participants
were enrolled in a software engineering class. Students were
asked to complete the two sessions to obtain extra credit,
but they were given the option to choose to have their data
examined as part of this study. Based on that consent, out of
56 participants from semester one and 65 from semester two,

7Web-based learning management system. https://instructure.com/canvas

we collected data from 45 participants in the first semester
and 51 participants in the second semester. Figure 1 depicts
each group’s final arrangement in the classroom, and Table III
contains the distribution of participants in each category.

Upon the experiment’s completion, there were 29 partici-
pants in Group N (Non-Smelly Test), 33 participants in Group
A (Assertion Roulette), and 34 participants in Group E (Eager
Test).

p u b l i c c l a s s C a l c u l a t o r E S T e s t ex tends
C a l c u l a t o r E S T e s t s c a f f o l d i n g {
@Test (t i m e o u t = 4000)
p u b l i c vo id t e s t 0 0 () throws Throwable {

C a l c u l a t o r c a l c u l a t o r 0 = new
C a l c u l a t o r () ;

double [] d o u b l e A r r a y 0 = new double [2] ;
double doub le0 = c a l c u l a t o r 0 . sum (

d o u b l e A r r a y 0) ;
a s s e r t E q u a l s (0 . 0 , double0 , 0 . 0 1) ;

double [] d o u b l e A r r a y 1 = new double [2] ;
d o u b l e A r r a y 1 [0] = (− 1 . 0) ;
double doub le1 = c a l c u l a t o r 0 . sum (

d o u b l e A r r a y 1) ;
a s s e r t E q u a l s ((− 1 . 0) , double1 , 0 . 0 1) ;

double [] d o u b l e A r r a y 2 = new double [2] ;
double doub le2 = c a l c u l a t o r 0 . s u b t r a c t (

d o u b l e A r r a y 2) ;
a s s e r t E q u a l s (0 . 0 , double2 , 0 . 0 1) ;

double [] d o u b l e A r r a y 3 = new double [5] ;
d o u b l e A r r a y 3 [2] = 9 3 ;
double doub le3 = c a l c u l a t o r 0 . s u b t r a c t (

d o u b l e A r r a y 3) ;
a s s e r t E q u a l s ((− 9 3) , double3 , 0 . 0 1) ;

}
}

Listing 4: Example of test case source code for Eager Test
suite.

H. Data Collection

Data collection, in this study, is two-fold. First, we con-
ducted a controlled experiment to determine how much time
each participant incurred debugging the given source code.
The participants began the lab session at the same time and
submitted their corresponding source code after completing
the debugging task. Second, we created a survey to gather
details on participants’ experiences in relation to debugging
test cases. The survey questions were made available once
they had finished identifying and fixing the bugs in the source
code. Google Forms8 was used to supply the participants with
survey questions and collect the data. Two multiple-choice
questions and one open-ended question were included in the
questionnaire.

I. Survey

The initial survey had eleven questions. Then, it was revised
to eliminate questions that were found repetitive, irrelevant,

8https://www.google.com/forms/about/

PREPRIN
T

TABLE III: Summary of the number of participants in the study.
Categories# of Semesters # of Students # of Eliminated Students # of Participated Students Non-Test Smell Assertion Roulette Eager Test

Semester One 56 11 45 14 16 15
Semester Two 65 14 51 15 17 19

Total 121 25 96 29 33 34

TABLE IV: Set of survey questions.
Question Type

Were you able to fix all the errors detected by the test cases? Multiple Choice
The process of finding the errors detected by the test cases
was smooth and easy. Multiple Choice
If you agreed or strongly agreed with the previous question,
please explain why Open-ended

or confusing. This revision reduced the number of questions
to nine. The pilot study of the four undergraduate students
revealed concerns about the length of the survey, the redun-
dancy of some questions, and the need for logical arrangement.
We reduced the nine questions to three accordingly. The final
survey contains three questions—two multiple-choice and one
open-ended—that can be seen in Table IV.

Survey questions were made for extra credit and only for the
students who participated in debugging the code. The survey
respected data privacy and protection guidelines. For instance,
we protect the privacy of the respondents who participated in
the study by anonymizing all responses. Additionally, pass-
words were used to secure the researcher’s laptop with all the
research materials, including participant responses. Further-
more, respondents’ consent was obtained prior to participation
for the utilization of their data for research purposes.

IV. Study Results
In this section, we present the impact of Assertion Roulette

and Eager Test on students’ debugging skills (Section IV-A)
and their experience with the debugging process for each test
suite (Section IV-B). Further, we discuss the results of suite
test for each group N, E, and A.

A. Experiment Results

RQ: To what extent do Assertion Roulette and Eager
Test impact the time spent by participants in debugging
failing test cases?

Method. The answer to this RQ, Figure 2 reports debugging
time boxplots of each group. To test the significance of
the difference between each pair of group values, we use
the Mann-Whitney U test, a non-parametric test that checks
continuous or ordinal data for a significant difference between
two independent groups. Our hypothesis is formulated to test
whether group A values are significantly higher than group N.
The difference is considered statistically significant if the p-
value is less than 0.05. The same test is repeated for (group
E, group N) and (group A, group E) pairs.

Results. As shown in Figure 2, group A values are sig-
nificantly higher than the values of group N (i.e., p< 0.05).
Similarly, group E values are significantly higher than the val-
ues of group N (i.e., p< 0.05). The two pairwise comparisons
indicate how students who were using either Suite A or Suite

E have spent a significantly larger amount of time locating the
errors, in comparison with students who were using Suite N.

Observations. The time spent to locate an error differs
depending on the test suite reporting it. For instance, when
using Suite N, each failing test method contains only one
failing assert statement. This failing statement would even-
tually indicate to the student the inconsistency between the
expected value and the actual value of the method under
test. The students would then investigate the corresponding
method. When the error is found and then fixed, not only the
investigated testing method would pass, but also any other test
methods that were failing for the same reason. On the other
hand, when using Suite A, each failing test method contains
multiple assert statements, in which a subset is failing with
more than one assert statement to be investigated. The students
tend to examine them to understand the common cause for
their failure before switching to the method under test to search
for the error. Therefore, the investigation of the multiple asserts
seems to increase the debugging time, and therefore, the Asser-
tion Roulette is negatively impacting the students’ debugging
process. Our observation brings an alternate perspective with
respect to the recent findings of Bai et al. [7], who conjectures
that Assertion Roulette may no longer be considered a code
smell. In fact, Bai et al. [7] demonstrated, through a controlled
classroom experiment, that Assertion Roulette does impact nei-
ther the frequency of testing nor the accuracy of the test cases.
We argue that Assertion Roulette is a program comprehension
problem. Therefore, a controlled experiment where students’
programming performance and testing behaviors are measured
may not reveal the negative symptoms of Assertion Roulette.
As for the Eager Test, the smell is caused by a test case
involving multiple production methods, thereby increasing
coupling between the test and production code. Such situations
result in participants reviewing multiple production methods
and continually switching between multiple code files as part
of their troubleshooting task, which potentially increases their
cognitive load and debugging time.

Summary: The presence of test smells, namely Assertion
Roulette and Eager Test, in the test suite cause participants
to spend more time troubleshooting test case failures, in
comparison with performing the same debugging process
using a non-smelly suite.

B. Survey Results

Method. We also wanted to know if the debugging task was
challenging or straightforward for the participants to complete.
Thus, we analyzed the participants’ survey responses after
they submitted them. Figure 3 presents the responses by
the participants divided based on each group. We asked the
participants three questions.

PREPRIN
T

Non-Smelly Test Assertion Roulette Eager Test
0

20

40

60

80

100

120

Test Suites

Ti
m

e
(M

in
ut

es
)

Fig. 2: Distribution of the time spent by participants to detect
and debug each test suite.

Results. We questioned the participants, ”Were you able to
fix all the errors detected by the test cases?”, to investigate
the impact of test smells on the performance of participants’
detection and debugging skills of the source code. As the
proportion of successful participants finishing the task within
the given time frame significantly impacts their performance,
this question is essential to the generalizability of the analysis.
We compiled the responses, and we verified them with the files
that were submitted. We found that a total of 13 participants
were unable to locate and fix the source code, with the number
of participants assigned to the Assertion Roulette test suite
failing by the biggest margin (n = 7). Three participants
who were provided the Non-Smelly Test test suite did not
manage to complete the assignment. Similarly, 3 participants
in the test suite for the Eager Test failed to complete the
task. These statistics illustrate the considerable detrimental
impact of Assertion Roulette on participants’ ability to debug
source code. It should be highlighted that participants were
uninformed of the test smells existence in the suites.

Summary: Although the participants were unaware of the
test smells they were assigned, most of them managed to
locate and fix all the issues in the source code. Additionally,
participants assigned with the Assertion Roulette test suite
had the highest percentage that was unable to complete
the assignment within the given time frame revealing the
negative impact of this particular smell.

Figure 3 showcases the response of participants regarding
the second multiple choice question of the survey; ”The
process of finding the errors detected by the test cases was
smooth and easy?” Five options—Strongly Agree, Agree,
Neutral, Disagree, or Strongly Disagree—were given to the
participants. The majority of participants, in general, strongly
agreed that the process of identifying and debugging test cases
is simple and straightforward.

Figure 3 (A) corresponds to the responses received by
the participants from Non-Smelly Test test suite. It is clear

that the highest ratio (55% n = 16) of participants agree
with the smoothness and straightforwardness of the underlying
debugging task. Following this, 28% (n = 8) of the participants
selected the ”Agree” option, which makes an overall 83%
(n = 24) of the participants who agreed with the simplicity
of locating and fixing bugs in Non-Smelly Test test suite. On
the contrary, only a small portion of participants, i.e., 3%
(n = 1), strongly disagreed hence, referring to the procedure
as difficult, while none of the participants disagreed with the
statement. On the other hand, 14% (n = 4) of the participants
remained neutral to the asked question. Therefore, it is fair to
say that the absence of test smells in the test cases makes the
participants’ task of debugging easy to understand and simple
to fix.

Figure 3 (B) showcases the responses received by the
participants of Assertion Roulette test suite to the survey
question #2. Unlike the previously discussed case, only 67%
(n = 22) participants of Assertion Roulette test suite coincided
with the process of locating and fixing the bugs to be easy
and smooth, among which 40% (n = 13) participants were
in strong agreement with the statement and 27% (n = 9)
of the participants agreed. Moreover, the ratio of participants
who disagreed and strongly disagreed with the stated question
amounted to 15% (n = 5), among which 9% (n = 3) disagreed
and 6% (n = 2) of the participants strongly disagreed. These
numbers may have formed due to the test cases’ inclusion of
numerous untitled assertions, which confused the participants.
The participants spent more time locating the assertion that
caused the test case to fail, making it more difficult to handle.
Therefore, the most difficult test smell to address in the test
cases can be ruled out as Assertion Roulette.

Figure 3 (C) presents the statistical data regarding partici-
pants’ responses to survey question #2 in terms of Eager Test
test suite. Overall, 82% (n = 28) of the underlying participants
voted in conjunction with the stated question. Where, 50%
(n = 17) strongly agreed with the ease and simplicity of
the process and 32% (n = 11) of the participants responded
with ”Agree” option. On the other hand, only 3% (n = 1)
of the participants disagreed with the process of locating and
fixing bugs in Eager Test test suit being easy and smooth.
In Eager Test test suit, the test cases from Non-Smelly Test
and Assertion Roulette test suites were merged into 9 test
cases. Moreover, this smell induces multiple production codes
when one method is invoked, causing a significant impact on
the debugging skills of the participants. However, participants
found it comparatively easy to handle as they were able to
follow up on the logic of the operation and locate the bug in
the source code.

Observations. Overall, students from all groups exhibit
similar levels of satisfaction with their testing experience, with
a slight increase for those using non-smelly tests, and those
using Eager Tests. None of the participants have reported any
issues they experienced, despite the smelliness of Suite A and
E. We argue that Assertion Roulette and Eager Test are hard to
be sought as problematic, as they are intuitive by nature. This
is aligned with their high frequency in open source systems,

PREPRIN
T

The process of finding the errors detected by the test cases was smooth and easy?

55%Strongly Agree
28%Agree

14%Neutral
0%Disagree
3%Strongly Disagree

0% 20% 40% 60% 80% 100%

40%Strongly Agree
27%Agree

18%Neutral
9%Disagree

6%Strongly Disagree

0% 20% 40% 60% 80% 100%

50%Strongly Agree
32%Agree

15%Neutral
3%Disagree

0%Strongly Disagree

0% 20% 40% 60% 80% 100%

(A) Non-Smelly Test (B) Assertion Roulette (C) Eager Test

Fig. 3: Distribution of students’ responses to survey question #2.

according to recent studies [10], [24], [33], [39].

Summary: Non-Smelly Test and Eager Test test suites were
equally rated to be simple and straightforward to handle. In
contrast, Assertion Roulette test smell was rendered to make
the process difficult for the participants.

Finally, we supplied the participants with an open-ended
question: If you agreed or strongly agreed with the previous
question, please explain why. Responses received from group
N participants show their high satisfaction with the overall
testing experience:

Ê Comment 1: “The structure was easier to di-
agnose with each test cases. Once I was able to
diagnose where the errors were, it got easier to clear
all the errors.”
Ê Comment 2: “Once I found which test case was
which, it was easy to find what function they were
using (after I realized the equate function was a built
in one). That in turn made it easy to figure out that
the error was limited in scope to that function alone
[...]”

Moreover, some participants who were not previously famil-
iar with the Java programming language expressed a positive
experience, as one of the participants said:

Ê Comment 3: “Haven’t touched java before, once
I understood what was going on, wasn’t difficult to
find”

Responses received from group A participants did not differ
from the previous group, as students expressed their satisfac-
tion with the debugging process:

Ê Comment 4: “ [...] Because I can see the ex-
pected result and the actual result and trace back
where the code is wrong.”

Responses received from group E participants did not de-
viate from the previous ones, as students positively described
their debugging:

Ê Comment 5: “The print out statement and the
expected output helped me identified where in the
code to look and what I needed to fix.”
Ê Comment 6: “The test cases pointed out some
functions being used and gave the expected and
actual values. This helped me to pinpoint what was
wrong and where.”

Ê Comment 7: “I found it easy to to find the
issues because the code was well formatted and
commented. When I saw the error was with subtrac-
tion I went to the subtraction function. There I read
the comments on what each part of the code was
supposed to do, when it was different I just changed
the code to do what the comments said.”

Among these positive comments, We note how comment 6
has mentioned the test of more than one method without nec-
essarily considering it to be problematic. It is apparent that the
successful fix of all errors raised a sense of accomplishment
among students and positively influenced them.

Summary: Assertion Roulette, and Eager Test smells are
transparent to students as long as they are successful in
locating and fixing errors.

V. Discussion
The analysis of the current investigation has revealed signif-

icant information regarding the impact of Assertion Roulette
and Eager Test on the participants’ debugging time.

As we previously discussed, Bai et al. [7] advocates for
Assertion Roulette to be no longer considered as test smell.
However, the aforesaid statement is not consistent with our
findings. Our experiment revealed that participants spent sig-
nificantly more time sorting the assertions that are stacked
in the Assertion Roulette test methods. Furthermore, we wit-
nessed a similar pattern of longer debugging time, when
students use Eager Test test methods to locate errors.

Therefore, educators need to raise the students’ awareness
of writing smell-free test cases. Students need to be taught
how to avoid writing multiple asserts under the same test
methods, or to test multiple production methods, using the
same test method. In this context, Buffardi et al. examined
students’ test methods on their assignments, and indicated
potential problems in their unit tests. In fact, the top three
common patterns detected in their test methods: multiple
member function calls, multiple assertions, and conditional
logic [13]. Thereby, taking an action to educate students on
how to avoid these anti-patterns, would decrease the early
propagation of these smells.

Additionally, the current research discovered that test cases
with descriptive names and commented asserts increase their
readability [37]. Thus, we encourage students to develop the
practice of documenting their test methods.

PREPRIN
T

A. Lessons Learned:
Throughout the experiment, several lessons were learned,

and perceptual observations were conducted.
Ï Lesson #1: In addition to teaching students about design

and code smells, academia must also instill in students the
importance of writing quality test cases, specifically test smells
and the harm caused by the introduction and existence of
test smells in the systems code base. Furthermore, teaching
students about code reviews should not be limited to the
production code but should also include the test suites, as such
code is vital to the system’s overall quality.

Ï Lesson #2: The research community has produced tools
to aid developers with detecting (and, in some cases) correct-
ing test smells for various programming languages, and testing
frameworks [3]. These tools have been utilized in multiple
empirical studies and have been effective in their detection
mechanism. Academia should promote using these tools in the
classroom to better equip students with means of evaluating the
quality of the test cases they produce for class assignments.
In addition, the automatic detection of test smells will help
students to troubleshoot issues much faster.

Ï Lesson #3: Even though most research on test smells
focuses on Java systems, test smells are not unique to JUnit-
based test suites. Therefore, the research and academic com-
munity should invest in exploring the types of test smells that
are unique to specific programming languages and paradigms
and passing that knowledge to students in the classroom so
that they are better prepared when entering the workforce.

VI. Threats to Validity
The applicability of the findings in this research is suscep-

tible to a number of threats.
Internal Validity. The students who participated in this

experiment were from the same university, making the par-
ticipant pool relatively coherent. To mitigate this, we run our
experiments in two semesters. Another pertinent threat relates
to the choice of the project under test. The complexity of
the project features may require advanced debugging skills,
which may crate a significant overhead in our experiment.
To mitigate this issue, we developed a calculator application
with eight operations. The choice of the calculator ensures its
intuitiveness to the students. Although some students might
not be familiar with the source code, we gave them detailed
instructions and documentation to familiarize themselves with
the project and source code in order to minimize the threat
and potential misunderstandings.

External Validity. This study is exclusively focused on two
test smells. However, given the prevalence of test smells, there
may be a chance that we missed an important smell that is
typically written by developers. To mitigate this threat, we
reviewed various research papers that have conducted similar
types of experiences. We concluded that the most popular
and frequent smells are Assertion Roulette, and Eager Test.
Moreover, it is essential to replicate the study with a broader
and more varied range of test smells along with a wider range
of codebases.

VII. Conclusion and Future Work
In this study, we explored the impact of test smells on a

student’s program comprehension ability. The results indicate
that the participants in our study who were assigned test
suites containing test smells took more time to complete the
assigned task of fixing errors in the production code than those
given test suites without test smells. Furthermore, the smell
Assertion Roulette had a greater impact on troubleshooting
and debugging than the Eager Test smell. For future work, we
plan to conduct a similar study with additional test smell types
to determine how these new smells impact a student’s ability
to comprehend code when performing maintenance activities.

Verifiability and Replicability
To enable full verifiability and replicability, our experimen-

tal materials are available9 [1].

References
[1] Supplementary materials. https://wajdialjedaani.github.io/testsmellstd/.
[2] K. Aaltonen, P. Ihantola, and O. Seppälä. Mutation analysis vs.

code coverage in automated assessment of students’ testing skills. In
Proceedings of the ACM international conference companion on Object
oriented programming systems languages and applications companion,
pages 153–160, 2010.

[3] W. Aljedaani, A. Peruma, A. Aljohani, M. Alotaibi, M. W. Mkaouer,
A. Ouni, C. D. Newman, A. Ghallab, and S. Ludi. Test smell detection
tools: A systematic mapping study. Evaluation and Assessment in
Software Engineering, pages 170–180, 2021.

[4] M. Aniche, F. Hermans, and A. Van Deursen. Pragmatic software testing
education. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, pages 414–420, 2019.

[5] P. Baheti, L. Williams, E. Gehringer, and D. Stotts. Exploring pair
programming in distributed object-oriented team projects. In Educator’s
Workshop, OOPSLA, pages 4–8. Citeseer, 2002.

[6] G. R. Bai, B. Clee, N. Shrestha, C. Chapman, C. Wright, and K. T.
Stolee. Exploring tools and strategies used during regular expression
composition tasks. In 2019 IEEE/ACM 27th International Conference
on Program Comprehension (ICPC), pages 197–208. IEEE, 2019.

[7] G. R. Bai, K. Presler-Marshall, S. R. Fisk, and K. T. Stolee. Is assertion
roulette still a test smell? an experiment from the perspective of testing
education. In 2022 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 1–7. IEEE, 2022.

[8] G. R. Bai, K. Presler-Marshall, T. W. Price, and K. T. Stolee. Check it
off: Exploring the impact of a checklist intervention on the quality of
student-authored unit tests. In Proceedings of the 27th ACM Conference
on on Innovation and Technology in Computer Science Education Vol.
1, pages 276–282, 2022.

[9] G. R. Bai, J. Smith, and K. T. Stolee. How students unit test: Perceptions,
practices, and pitfalls. In Proceedings of the 26th ACM Conference on
Innovation and Technology in Computer Science Education V. 1, pages
248–254, 2021.

[10] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley. An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance. In 2012 28th IEEE international conference
on software maintenance (ICSM), pages 56–65. IEEE, 2012.

[11] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley. Are
test smells really harmful? an empirical study. Empirical Software
Engineering, 20(4):1052–1094, 2015.

[12] K. Beck. Test-driven Development: By Example. Addison-Wesley
signature series. Addison-Wesley, 2003.

[13] K. Buffardi and J. Aguirre-Ayala. Unit test smells and accuracy of
software engineering student test suites. In Proceedings of the 26th
ACM Conference on Innovation and Technology in Computer Science
Education V. 1, pages 234–240, 2021.

9https://wajdialjedaani.github.io/testsmellstd/

https://wajdialjedaani.github.io/testsmellstd/

PREPRIN
T

[14] B. Camara, M. Silva, A. Endo, and S. Vergilio. On the use of test
smells for prediction of flaky tests. In Proceedings of the 6th Brazilian
Symposium on Systematic and Automated Software Testing, SAST ’21,
page 46–54, New York, NY, USA, 2021. Association for Computing
Machinery.

[15] J. C. Carver and N. A. Kraft. Evaluating the testing ability of senior-
level computer science students. In 2011 24th IEEE-CS Conference on
Software Engineering Education and Training (CSEE&T), pages 169–
178. IEEE, 2011.

[16] S. H. Edwards. Improving student performance by evaluating how well
students test their own programs. Journal on Educational Resources in
Computing (JERIC), 3(3):1–es, 2003.

[17] S. H. Edwards. Using software testing to move students from trial-
and-error to reflection-in-action. In Proceedings of the 35th SIGCSE
technical symposium on Computer science education, pages 26–30,
2004.

[18] S. H. Edwards and Z. Shams. Do student programmers all tend to
write the same software tests? In Proceedings of the 2014 conference
on Innovation & technology in computer science education, pages 171–
176, 2014.

[19] S. H. Edwards, Z. Shams, M. Cogswell, and R. C. Senkbeil. Running
students’ software tests against each others’ code: new life for an old”
gimmick”. In Proceedings of the 43rd ACM technical symposium on
Computer Science Education, pages 221–226, 2012.

[20] G. Fraser, A. Gambi, M. Kreis, and J. M. Rojas. Gamifying a software
testing course with code defenders. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, pages 571–577,
2019.

[21] V. Garousi and B. Küçük. Smells in software test code: A survey of
knowledge in industry and academia. Journal of systems and software,
138:52–81, 2018.

[22] A. Gaspar, S. Langevin, N. Boyer, and R. Tindell. A preliminary review
of undergraduate programming students’ perspectives on writing tests,
working with others, & using peer testing. In Proceedings of the 14th
annual ACM SIGITE conference on Information technology education,
pages 109–114, 2013.

[23] M. H. Goldwasser. A gimmick to integrate software testing throughout
the curriculum. ACM SIGCSE Bulletin, 34(1):271–275, 2002.

[24] G. Grano, F. Palomba, D. Di Nucci, A. De Lucia, and H. C. Gall. Scented
since the beginning: On the diffuseness of test smells in automatically
generated test code. Journal of Systems and Software, 156:312–327,
2019.

[25] P. Hamill. Unit Test Frameworks: Tools for High-Quality Software
Development. O’Reilly Series. O’Reilly Media, 2004.

[26] J. In. Introduction of a pilot study. Korean journal of anesthesiology,
70(6):601–605, 2017.

[27] A. M. Kazerouni, S. H. Edwards, and C. A. Shaffer. Quantifying incre-
mental development practices and their relationship to procrastination. In
Proceedings of the 2017 ACM Conference on International Computing
Education Research, pages 191–199, 2017.

[28] A. M. Kazerouni, C. A. Shaffer, S. H. Edwards, and F. Servant.
In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, pages 407–413, 2019.

[29] V. Khorikov. Unit Testing Principles, Practices, and Patterns. Manning,
2020.

[30] D. J. Kim, T.-H. P. Chen, and J. Yang. The secret life of test smells-
an empirical study on test smell evolution and maintenance. Empirical
Software Engineering, 26(5):1–47, 2021.

[31] G. Meszaros. xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[32] A. Panichella, S. Panichella, G. Fraser, A. A. Sawant, and V. J.
Hellendoorn. Test smells 20 years later: Detectability, validity, and
reliability. Empirical Software Engineering, 2022.

[33] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni,
and F. Palomba. On the distribution of test smells in open source
android applications: An exploratory study. In Proceedings of the 29th
Annual International Conference on Computer Science and Software
Engineering, CASCON ’19, page 193–202, USA, 2019. IBM Corp.

[34] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni,
and F. Palomba. Tsdetect: An open source test smells detection tool.
In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 1650–1654, 2020.

[35] R. Pressman and B. Maxim. Software Engineering: A Practitioner’s
Approach. McGraw-Hill Education, 2019.

[36] J. Robergé and C. Suriano. Using laboratories to teach software
engineering principles in the introductory computer science curriculum.
ACM SIGCSE Bulletin, 26(1):106–110, 1994.

[37] S. Scalabrino, M. Linares-Vasquez, D. Poshyvanyk, and R. Oliveto.
Improving code readability models with textual features. In 2016 IEEE
24th International Conference on Program Comprehension (ICPC),
pages 1–10. IEEE, 2016.

[38] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli.
On the relation of test smells to software code quality. In 2018
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 1–12, 2018.

[39] D. Spadini, M. Schvarcbacher, A.-M. Oprescu, M. Bruntink, and A. Bac-
chelli. Investigating severity thresholds for test smells. In Proceedings
of the 17th International Conference on Mining Software Repositories,
MSR ’20, page 311–321, New York, NY, USA, 2020. Association for
Computing Machinery.

[40] B. van Bladel and S. Demeyer. Test refactoring: a research agenda. In
CEUR workshop proceedings, volume 2070, pages 1–6, 2017.

[41] A. Van Deursen, L. Moonen, A. Van Den Bergh, and G. Kok. Refac-
toring test code. In Proceedings of the 2nd international conference
on extreme programming and flexible processes in software engineering
(XP2001), pages 92–95. Citeseer, 2001.

[42] L. Williams and R. L. Upchurch. In support of student pair-
programming. ACM SIGCSE Bulletin, 33(1):327–331, 2001.

[43] L. Yenigalla, V. Sinha, B. Sharif, and M. Crosby. How novices read
source code in introductory courses on programming: an eye-tracking
experiment. In International Conference on Augmented Cognition, pages
120–131. Springer, 2016.

	I Introduction
	I-A Motivation & Goal
	I-B Contribution

	II Test Smell Definitions & Related Work
	II-A Test Smell Definitions
	II-B Related Work
	II-B1 Software Testing in Education
	II-B2 Students' programming and testing activities

	III Study Design
	III-A Project Overview
	III-B Test Suites Creation
	III-C Errors Generation
	III-D Target Course
	III-E Pilot Study
	III-F Procedure
	III-G Participants
	III-H Data Collection
	III-I Survey

	IV Study Results
	IV-A Experiment Results
	IV-B Survey Results

	V Discussion
	V-A Lessons Learned:

	VI Threats to Validity
	VII Conclusion and Future Work
	References

