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Abstract—Code comments are vital to source code as they
help developers with program comprehension tasks. Written in
natural language (usually English), code comments convey a
variety of different information, which are grouped into specific
categories. In this study, we construct 19 binary machine learning
classifiers for code comment categories that belong to three
different programming languages. We present a comparison
of performance scores for different types of machine learning
classifiers and show that the Linear SVC classifier has the highest
average F1 score of 0.5474.

Index Terms—Code Comments, Natural Language Processing,
Machine Learning, Binary Classification

I. INTRODUCTION

Program comprehension is an essential activity in any
software maintenance task [1], which involves developers
reading the code to understand its purpose, behavior, and
shortcomings (if any) [2]. However, while source code is
helpful, it is constrained by the semantics and syntax of
programming language in the amount of information it can
provide. In contrast, code comments are written in natural
language (such as English) and are not restricted to any specific
syntax or grammar; they can provide information that might not
be immediately obvious from the source code alone. Developers
use code comments to document various aspects of their code,
from explaining behavior to documenting workarounds to
including metadata (such as a license), all expressed in natural
language [3], [4]. While such information in comments is useful,
it would be more productive for developers to group such
comments into related categories automatically. This would
help developers locate pertinent information faster, such as
improving code quality by removing/replacing deprecated code.

The goal of this study is to understand the extent to which
different types of binary machine learning classifiers can
identify code comment types. Our findings show that while no
single classifier single-handedly achieves the highest F1 score
for each individual comment type, the Linear SVC has the
highest average F1 score of 0.5474. The outcome of this study
will help the research community understand the strengths and
shortcomings of using such models for this particular task and
discover avenues for future research in this area.

II. EXPERIMENT DESIGN

In this section, we discuss the methodology of our study.
Figure 1 depicts an outline of the activities in our experiment
methodology, which we describe below. Furthermore, our
dataset and code are available for replication/extension at [5].

A. Source Dataset

We utilize an existing dataset of 6,738 class comment
sentences produced by Rani et al. [4] and made available
as part of the NLBSE 2023 tool competition [6]. These
comment sentences are obtained from 20 open-source projects
implemented using Java, Python, and Pharo. The authors of
the dataset also perform text preprocessing and splitting of the
comments. Furthermore, the dataset also indicates the category
(i.e., class) associated with the comment sentence. Below is a
breakdown of comments categories:
• Java - 2418 comment sentences in 7 categories: summary,

pointer, deprecation, rational, ownership, usage, and expand
• Pharo - 1765 comment sentences in 7 categories: key mes-

sages, intent, class references, example, key implementation
points, responsibilities, and collaborators

• Python - 2555 comment sentences in 5 categories: summary,
parameters, usage, development notes, and expand

For each programming language in the dataset, we execute the
activities in the subsequent subsections.

B. Text Preprocessing

Since code comments are crafted using natural language,
there exists the possibility of developers composing these
comments using a variety of tokens that include numeric
digits and non-alphanumeric characters (such as brackets,
parentheses, periods, etc.). Therefore, to improve model
classification performance, it is essential to transform the
comment sentences to a standard and convenient format (i.e.,
text normalization) [7]. We achieve text normalization through
a series of processing activities:

• Removal of whitespaces from the start and end of the text
• Expansion of contractions (e.g., ‘I’m’ → ‘I am’)
• Removal of non-alphanumeric characters
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Fig. 1. Overview of our methodology for constructing the comment classification models.

TABLE I
COMPARISON OF F1 SCORES ASSOCIATED WITH EACH MACHINE LEARNING CLASSIFIER FOR EACH CATEGORY. THE SCORE IN GREEN REPRESENTS THE

HIGHEST F1 SCORE FOR THE SPECIFIC CATEGORY. THE SCORE IN BLUE IS THE CLASSIFIER THAT HAS THE HIGHEST AVERAGE F1 SCORE.

Category Decision
Tree

K-Nearest
Neighbors

Bernoulli
Naive Bayes

Multi-Layer
Perceptron

Multinomial
Naive Bayes

Random
Forest

Logistic
Regression

Linear
SVC

JAVA
Deprecation 0.5797 0.8163 0.5195 0.7600 0.6032 0.8085 0.7600 0.7170
Pointer 0.6069 0.5890 0.5697 0.5556 0.6301 0.6418 0.6265 0.5850
Summary 0.5787 0.5030 0.6327 0.5532 0.5905 0.5455 0.5842 0.5684
Expand 0.4857 0.5833 0.5704 0.5970 0.6097 0.6160 0.6264 0.6100
Ownership 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Rational 0.5455 0.5517 0.5854 0.6122 0.5669 0.6667 0.5833 0.5920
Usage 0.5931 0.7255 0.7612 0.7493 0.7740 0.7435 0.7507 0.7413

PHARO
Class References 0.1778 0.2963 0.2353 0.1600 0.2105 0.3000 0.2069 0.2857
Example 0.7132 0.7320 0.8063 0.7525 0.7778 0.7438 0.7509 0.7603
Key Implementation Points 0.2642 0.3125 0.3529 0.3571 0.3902 0.2424 0.3191 0.4124
Collaborators 0.3810 0.2979 0.2712 0.2609 0.2308 0.1714 0.4138 0.4231
Intent 0.4854 0.3488 0.3208 0.2759 0.3390 0.5479 0.4554 0.4301
Key Messages 0.4628 0.4407 0.5733 0.6055 0.5797 0.5149 0.5 0.5254
Responsibilities 0.3407 0.3193 0.3867 0.4192 0.3617 0.3585 0.4485 0.4218

PYTHON
Development Notes 0.3472 0.2314 0.2995 0.3066 0.2769 0.3333 0.2838 0.3145
Parameters 0.6523 0.5831 0.6359 0.6203 0.6387 0.6605 0.6565 0.6337
Summary 0.3169 0.3444 0.4017 0.3579 0.4050 0.3432 0.4138 0.3774
Expand 0.3514 0.4599 0.4571 0.4643 0.4534 0.4293 0.4519 0.4636
Usage 0.4859 0.4266 0.5481 0.5233 0.5342 0.5275 0.5519 0.5387

AVERGE F1 SCORE 0.4931 0.5033 0.5225 0.5227 0.5249 0.5366 0.5465 0.5474

• Removal of single-character words
• Convert text to lowercase
• Removal of stopwords (using the NLTK stopword list [8])
• Reduce words to their base form or root using stemming
• Replace numeric digits with a NUM token
• Replace empty string with an EMT token

C. Filter Category

The purpose of this study is the construction of binary
classifiers for each of the 19 categories mentioned above.
Therefore, for each programming language dataset, we filter the
comments for each category. For example, when processing the
Java comments, we filter on each of the 7 categories. For the
activities in the subsequent subsections, we utilize this subset
of comments (i.e., each programming language category) to
build and evaluate the classification model.

D. Train/Test Split

As part of measuring the model’s effectiveness in correctly
classifying comment sentences, it must be tested against a
held-out test set containing comment sentences with known
classes. We split the filtered dataset into a training and test
dataset. Contained within the source dataset is a column that
indicates if a specific comment sentence belongs to the test or
training set; we use this column to create the train/test datasets.

E. Feature Representation

The raw comment text must be converted into a set of
numerical features that can be used as input to the model. Most
machine learning algorithms can only process numerical data
instead of raw text. Furthermore, converting text to numerical
data reduces the complexity of the data. To this extent, we



utilize the Term Frequency-Inverse Document Frequency (TF-
IDF) approach of representing the raw comment sentence text
as numerical values. TF-IDF calculates the importance of each
word in a document based on its frequency and rarity, which
we then use as features for the machine learning model [9].
In this study, we only utilize the comment sentence text as
input to the classification model. In our process, we first fit
the vectorizer on the training data and transform the training
data into a matrix of TF-IDF features. Finally, we utilize this
generated vocabulary and TF-IDF representation scheme to
transform the test data into a matrix of TF-IDF features. This
approach ensures that the resulting test data TF-IDF matrix
has the same number of columns (i.e., the same vocabulary)
as the training data and avoids model performance issues.

F. Oversampling

We applied an oversampling technique to the training datasets
to mitigate the issue of having imbalanced classes. Having an
imbalanced dataset will lead to a bias in the model towards the
majority class due to the disproportionate amount of data from
that class. For this study, we utilized random oversampling to
generate new samples for the under-represented classes in the
training dataset [10]. We do not oversample the test dataset, as
we evaluate the model using metrics that inherently account
for lack of balance (precision, recall, and F1 score).

G. Model Training & Tuning

Given the complexity of various machine learning
classification algorithms, selecting the most optimal algorithm
for a given problem using only theoretical arguments can
be challenging. Hence, in this study, we evaluate 8 common
machine learning classification algorithms frequently utilized
in software engineering research [11]–[13]. These classification
algorithms fall into different categories:

• Naive Bayes (NB): Multinomial NB and Bernoulli NB
• Support Vector Machines: Linear Support Vector Classifier
• Trees: Decision Tree and Random Forest
• Nearest Neighbors: K-Nearest Neighbors
• Linear Model: Logistic Regression
• Neural Network: Multi-Layer Perceptron

For each classification algorithm listed above, we use grid
search in conjunction with a 10-fold cross-validation to perform
a search over specified hyperparameter values to evaluate
the model’s performance. Grid search utilizes a brute force
technique to evaluate all combinations of hyperparameters
to obtain the best performance [14]. We tuned at least one
hyperparameter associated with each classifier in our list.
The hyperparameter values were either a range of values or
a predefined set of values. For example, we evaluated the
performance of the Decision Tree classifier by changing the
maximum depth hyperparameter from 5 to 100 in increments
of 5. The complete set of evaluated hyperparameters and their
range of possible values are available in the source code
contained within the replication package (available at [5]).

H. Best/Optimized Model
After hyperparameter tuning, we obtain a model for each

classification algorithm that performs the best when built on the
training data. For each of these optimum models, we capture
the values of the hyperparameters and save the model.

I. Test Predictions
We utilize the optimum model for each classification

algorithm to predict the test data values (i.e., unseen data).
We save the predictions as a CSV file.

J. Model Performance Scoring
Next, we utilize standard balanced binary classification

metrics (precision, recall, and F1 score) to evaluate the optimum
model’s performance in predicting the test data values. To
calculate these scores, we utilize the count of true positive
(TP), false positive (FP), and false negative (FN) instances in
the predicted test data values. Below we list the formulas for
the three performance measures:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2 ∗ Precision ∗Recall

Precision+Recall

We calculate the precision, recall, and F1 scores for each
classification model for each programming language category.
Since we are evaluating eight classifiers across 19 categories,
we calculate 190 instances of precision, recall, and F1 scores.
While there are different variants of the F1-score, such as
‘micro’, ‘macro’, etc., we utilize the ‘binary’ option since our
problem is a binary classification task [15], [16]. Using another
variant will give different (and possibly higher) scores.

III. EXPERIMENT RESULTS

In this section, we report on the results of our experiment.
Table I shows the F1 scores we obtain for each classification
model for each programming language category. From this
table, we observe that no single classification model achieves
the highest F1 score for each programming language category.
Looking at the average F1 scores, we observe that Linear SVC
has the highest average F1 score of 0.5474. It is interesting
to note that all models were able to successfully classify
all test data instances of the Java Ownership category, 489
instances. We also observe that the models seem to fare well
with Java comments than with Pharo and Python comments.
In Table II, we provide the precision and recall score of the
optimal Linear Support Vector Classifier for each programming
language category.

It is interesting to note that while several machine learning
methods with varying complexities were explored, the two
best-performing models were constrained to learning linearly
separating boundaries: logistic regression and a support vector
classifier with a linear kernel. These methods are less prone to
overfitting due to the simplicity of the decision boundary.



TABLE II
BREAKDOWN OF THE PERFORMANCE SCORES OF THE LINEAR SVC

CLASSIFIERS FOR EACH PROGRAMMING LANGUAGE CATEGORY.

Category Precision Recall F1

JAVA
Deprecation 0.7308 0.7037 0.7170
Pointer 0.5972 0.5733 0.5850
Summary 0.5243 0.6207 0.5684
Expand 0.5985 0.6220 0.6100
Ownership 1.0000 1.0000 1.0000
Rational 0.5441 0.6491 0.5920
Usage 0.7277 0.7554 0.7413

PHARO
Class References 0.3636 0.2353 0.2857
Example 0.7929 0.7303 0.7603
Key Implementation Points 0.4082 0.4167 0.4124
Collaborators 0.4583 0.3929 0.4231
Intent 0.4167 0.4444 0.4301
Key Messages 0.5636 0.4921 0.5254
Responsibilities 0.3974 0.4493 0.4218

PYTHON
Development Notes 0.2660 0.3846 0.3145
Parameters 0.5956 0.6770 0.6337
Summary 0.3361 0.4301 0.3774
Expand 0.4322 0.5000 0.4636
Usage 0.5438 0.5337 0.5387

AVERAGE SCORE 0.5419 0.5585 0.5474

IV. THREATS TO VALIDITY

Even though our study includes a variety of classification
algorithms, other types of classifiers can be utilized on the
same dataset. Likewise, there is a possibility that alternative
preprocessing and oversampling techniques, features (for
instance, using the NEON tool [17]), and hyperparameters
would yield improved performance scores.

V. CONCLUSION & FUTURE WORK

In this study, we explored the performance of different
types of machine learning classifiers in performing binary
classification of code comment sentences. Our results show that
even though no single classifier can achieve high F1 scores for
all code comment categories, the simplest model we developed
(i.e., a Linear SVC), which is constrained to linear decision
boundaries, yielded the highest average F1 score.

We did not observe a noticeable consistent pattern which
might provide potential explanations as to why the best
classifier performs better for some categories than for others.
Understanding these discrepancies is a salient opportunity for
further evaluation.

Future work includes evaluating attention-based deep learn-
ing models, such as BERT [18] and GPT-3 [19]. We hypothesize
that such large pre-trained language models can outperform the
models presented here, although the extent to which is to be
determined due to the heterogeneous nature of the prediction
task. It would also be interesting to explore the feature vector
representation space beyond TF-IDF, such as automatically
learned representations (notably, Word2Vec [20], [21]).

Our source code (along with instructions) and generated
optimal models are available for download at [5].
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