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Abstract—Unit testing is a vital part of the software devel-
opment process and involves developers writing code to verify
or assert production code. Furthermore, to help comprehend
the test case and troubleshoot issues, developers have the option
to provide a message that explains the reason for the assertion
failure. In this exploratory empirical study, we examine the char-
acteristics of assertion messages contained in the test methods
in 20 open-source Java systems. Our findings show that while
developers rarely utilize the option of supplying a message, those
who do, either compose it of only string literals, identifiers, or
a combination of both types. Using standard English readability
measuring techniques, we observe that a beginner’s knowledge
of English is required to understand messages containing only
identifiers, while a 4th-grade education level is required to
understand messages composed of string literals. We also discuss
shortcomings with using such readability measuring techniques
and common anti-patterns in assert message construction. We
envision our results incorporated into code quality tools that
appraise the understandability of assertion messages.

I. INTRODUCTION

Unit tests are essential to ensuring a software system’s quality
[1]. Unit tests involve writing code in the form of test methods
(i.e., test cases) to verify the functionality of the source (i.e.,
production) code. A critical part of a test method are assertion
statements [2]. These are methods that developers utilize to
verify the output of a production method, under test, against a
predefined value. The result of an assertion method determines
if the test case passes or fails. Further, to help developers with
troubleshooting failing test cases, developers have the option
to provide a message explaining the reason for the failure.

Similar to production code, developers must adhere to
best practices when writing unit tests so as not to impede
maintenance activities [3]. To this extent, current research on
test code quality has predominantly focused on test smells
[4], identifier naming [5], [6], including the impact of rename
recommendation models [7], and test case readability [8]–[10].
While these research works do indeed focus on the quality of
test code, studies utilizing or proposing readability models do

not consider the explanation message of an assertion method.
At most, these code readability models consider the presence
of assertions in the test case [8], [9] or are not specialized
for test code [11]. Furthermore, most test readability studies
focus on the readability of automatically generated test code or
comparing the readability of developer-written test cases against
auto-generated code [12]. Since developers are free to have
multiple assertions within a test case and are not restricted in
how they craft the message, having an understandable message
is imperative to comprehending both test case behavior and
troubleshooting test failures. For example, when comparing the
messages in Listing 1 and Listing 2, we see that the message in
Listing 1 is readable and descriptive, clearly stating the reason
for the failure of the test case, which helps the developer with
troubleshooting. However, the message in Listing 2 is a set of
numbers (enclosed within a string literal), and while it might
make sense (i.e., understandable) to the author of the test case,
external or new team developers would find it challenging to
understand the meaning of the message.

Since little is known about the extent to which developers
rely on the documentation feature of assertion methods, this
exploratory study forms the first step to more in-depth studies of
assertion messages. That, for instance, investigating the benefits
developers gain from these messages and the developer’s mental
model for crafting and comprehending messages.
@Test
p u b l i c vo id t e s t Q u e r y ( ) {

.

.
I t e r a t o r <QueryKeyResul t> r e s u l t s ;
r e s u l t s = g e t A d m i n C l i e n t ( ) . s t r e a m i n g O p s . queryKeys

( 0 , t e s t S t o r e N a m e , queryKeys . i t e r a t o r ( ) ) ;
a s s e r t T r u e ( ” R e s u l t s s h o u l d n o t be empty ” , r e s u l t s .

hasNext ( ) ) ;
.
.

}

Listing 1. An example of an assertion method with a textual message explaining
the test case’s failure [13].
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@Test
void t e s t I s E m p t y ( ) {

.

.
a s s e r t T r u e ( ” ( 0 , 0 ) ” , new Range<>( I n t e g e r . c l a s s , 0 ,

f a l s e , 0 , f a l s e ) . i sEmpty ( ) ) ;
.
.

}

Listing 2. An example of an assertion method using digits (contained within
a string literal) to explain the test case’s failure [14].

A. Goal & Research Questions

The goal of this study is to explore the use of explanation
messages in assertion methods contained within test methods.
Thus, we study the extent to which developers utilize these
messages and the characteristics of how the messages are
structured to help developers efficiently troubleshoot test case
failures. We envision findings from our study supporting
the development of tools and techniques for appraising the
quality of assertion messages and supporting auto-generation
of test cases with comprehension-friendly messages. Hence,
we answer the following research questions (RQs):

RQ1: How often do developers use messages in their
assertion methods, and in what ways are these messages
related? This question informs us of the extent to which
developers utilize an explanation message in an assertion
method contained within test methods. Furthermore, through
this RQ, we group messages into high-level categories based
on the types of tokens present in the message to highlight how
developers compose the message.
RQ2: To what extent do developers provide easily com-
prehensible messages in assertion methods? In this RQ,
we utilize existing techniques to measure the readability of
different categories of assertion messages and supplement the
findings with qualitative examples. At a high level, the results
provide developers with guidance on how they should craft
their messages.

B. Contribution

The main contributions from this work are as follows:
• Our results represent a preliminary yet significant step toward

a deeper awareness of assertion messages. Through our
discussion, we pave the way for subsequent research that
will enhance our knowledge of high-quality comprehensible
assertion messages, especially in the realm of automated code
quality tools that integrate into the development workflow.

• A dataset of assertion messages, their categorization, and
linguistic properties for extension and replication purposes.

C. Paper Structure

This paper is organized as follows: In Section II, as part
of our related work, we report on studies that examine the
readability of unit test code. Section III provides details about
our investigation methodology, while Section IV answers
our research questions by reporting on the results of our
experiments. Section V provides an in-depth discussion and

takeaways from our findings. Finally, Section VI reports on
the threats to the validity of our study before our conclusion
and future work in Section VII.

II. RELATED WORK

While there are multiple studies on code readability models
(e.g., [11], [15]), empirical code readability studies involving
project/code repositories and developers/students (e.g., [16]–
[18]), we limit our reporting of related work to only studies
examining test code’s readability. These studies include gen-
erating/evaluating test code identifier names, specifically test
method names, and work that proposes test readability models
or utilizes readability models on test code.

Wu and Clause [19] utilize a set of test method construc-
tion patterns (i.e., action-predicate-scenario) to identify non-
descriptive test method names and provide developers with
information for a more descriptive name. The authors conduct
an empirical study and show that their technique yields a 95%
true-positive rate. In another study [20], the authors compare
a test method name with its siblings and determine that its
name is often based on what makes the test unique from
its siblings. The authors propose an automated technique that
extracts unique attributes of a test, and an evaluation by subject
matter experts shows that these details are helpful for test
method name generation. Zhang et al. [21] parse test method
names using natural language processing techniques to produce
test method templates automatically. The action phrase and
the predicate phrase from the name of a test method are used
by the authors in their strategy, which relies on elements of
English grammar to carry out the parsing. The authors report
an accuracy of 80% of their proposed technique. In a later work
[22], the authors propose a natural language processing-based
technique for generating descriptive test method names based
on the method’s body. In their strategy, the authors examine
the test method’s assertions to determine the action, anticipated
result, and the situation being tested. In their approach, Daka et
al. [6] suggest a method for generating concise, descriptive test
method names based on API-level coverage targets, and validate
their method by interviewing 47 students. Lin et al. [7] examine
the quality of identifiers in test suites and compare them to
production identifiers. The results show that identifiers in test
suites are of low quality, especially identifiers in automatically
generated test code. In an empirical study by Peruma et al. [5],
the authors examine the evolution of test method names by
examining how the part-of-speech tags change during rename
operations. The authors show that test method names typically
have a structure that differs from production method names. The
authors also show some common pattern structures developers
utilize for naming test methods.

Daka et al. [9], propose a readability model for test code that
utilizes multiple features such as identifier length, numbers,
loops, asserts, etc. The authors show that their approach
outperforms other readability modes on code snippets. However,
although the author’s model includes assertions, the authors do
not consider the understandability of the assert method message.
In an extension of their work [23], the authors utilize the model
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Fig. 1. Overview of our experiment design.

of test readability and additional optimization techniques for
test generation for the Guava library and show that subject
matter expert prefer their readability-optimized test cases. Using
a readability model, an empirical study by Granoet al. [10]
shows that test code is less readable than the production code
they test. The authors also state that developer-written test
cases are easier to read than automatically generated test cases.

A. Summary

While there are studies on test code readability, these studies
do not evaluate the quality of the explanation message in
the assert method; at most, they limit their analysis to the
presence/absence of an assert method in a test case. In short,
we lack the understanding of knowing if and how developers
use the documentation property of assertion methods.

III. EXPERIMENT DESIGN

In this section, we discuss the methodology of our study.
Figure 1 depicts an outline of the activities in our experiment
methodology, which we describe below. Furthermore, our
dataset is available for replication/extension purposes at [24].

Source Projects. This study analyzes the most recent re-
lease/version (at the time of this study) of 20 open-source
Java systems that have their unit tests written using the JUnit
4 testing framework1. We selected these systems as they were
used in prior unit test code-related studies [5], [20], [25].

Test File Detection & Parsing. We utilized the JetBrains
Software Development Kit (SDK) 2, specifically the IntelliJ
Platform SDK3, to detect test files in the projects and parse
these files. The SDK provides a rich API, including utility
methods, to help us with our automation tasks. For each
project, we first obtained the list of JUnit test files using
the JUnitUtil.getTestClass()4 API. This method,
internally, utilizes multiple heuristics, such as evaluating
annotations, to determine if the class is a valid test file. Next,

1https://junit.org/junit4
2https://www.jetbrains.com/help/idea/sdk.html
3https://plugins.jetbrains.com/docs/intellij/about.html
4https://github.com/JetBrains/intellij-community/blob/master/java/

execution/impl/src/com/intellij/execution/junit/JUnitUtil.java

we utilize JavaRecursiveElementVisitor5 to access
each method declaration in the test class and obtain the list of
method call expressions within the method declaration. Next,
we evaluate each method call to determine if the called method
is a JUnit assertion method6. An advantage of using the IntelliJ
Platform SDK is that we can check the class the called method
belongs to and the data type of the method’s parameters. Using
these features, we do not have to only depend on the method’s
name to determine if it is a JUnit assert, hence, ensuring that we
only include valid JUnit assertion methods in our experiments.
For all detected assertions, we extract the assert method and
other metadata, such as the containing method, class, and line
number, and if the containing method is a test method.

Manual Message Categorization. To better understand the
types of messages developers provide in assertion methods, we
manually reviewed each message in the dataset. We assign the
message to one of the three below categories as part of the
review (note: in the below examples, we highlight, in yellow,
the assertion message):
• Identifier - The message is the value of an identifier, such

as a method call, a constant, or variable/attribute value
e.g., assertEquals(r.getLowerBound(), 1.0,
EPSILON);

• Text - The message is a string literal (i.e., a sequence of
characters enclosed in double quotation marks)
e.g., assertNull("interpolate", name);

• Combination - The message is a combination of string
literals and identifiers appended together
e.g., assertFalse(‘‘too big at ’’ + count,
count > 100);

Readability Score Generation. We leverage multiple well-
established English text readability metrics to determine the
understandability scores for the assertion messages. These
metrics have been utilized in prior work as-is or in conjunction
with other metrics/measurements to assist with code readability
(e.g., comprehending code comments) [11], [26], [27]. We
utilize the following readability tests:
• Flesch Reading Ease [28] - The higher the score, the easier it

is to read; text with a high score usually has short sentences
• Flesch-Kincaid Grade Level [29] - Calculates the minimum

U.S. education grade required to understand the text
Since the message text can contain an identifier name

with more than one term, such names must be split into
their constituent terms. For example, the method name
getLowerBound(), should be split into the terms ‘get’,
‘Lower’, and ‘Bound’. Similar to prior work on identifier names
[5], [30], [31], we split such names using the Ronin splitter
algorithm implemented in the Python package Spiral [32].
This pre-processing ensures more accurate readability scores.
Furthermore, we also extract measures around the structure
of the message, such as the number of words, sentences,

5https://github.com/JetBrains/intellij-community/blob/idea/223.7571.182/
java/java-psi-api/src/com/intellij/psi/JavaRecursiveElementVisitor.java

6https://junit.org/junit4/javadoc/latest/org/junit/Assert.html

https://junit.org/junit4
https://www.jetbrains.com/help/idea/sdk.html
https://plugins.jetbrains.com/docs/intellij/about.html
https://github.com/JetBrains/intellij-community/blob/master/java/execution/impl/src/com/intellij/execution/junit/JUnitUtil.java
https://github.com/JetBrains/intellij-community/blob/master/java/execution/impl/src/com/intellij/execution/junit/JUnitUtil.java
https://github.com/JetBrains/intellij-community/blob/idea/223.7571.182/java/java-psi-api/src/com/intellij/psi/JavaRecursiveElementVisitor.java
https://github.com/JetBrains/intellij-community/blob/idea/223.7571.182/java/java-psi-api/src/com/intellij/psi/JavaRecursiveElementVisitor.java
https://junit.org/junit4/javadoc/latest/org/junit/Assert.html


TABLE I
STATISTICAL SUMMARY ON THE OCCURRENCE OF ASSERTION METHODS IN

EACH PROJECT WITHIN THE DATASET.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Assertion methods without an explanation message
1.0 58.0 270.0 4,122.0 2,826.0 42,573.0

Assertion methods with an explanation message
2.0 14.5 115.0 352.0 523.5 1,335.0

polysyllabic words, etc., using the Python Textstat7 library.
Part-of-Speech Generation. To determine the part-of-speech
tags associated with the words in an assertion message, we
leveraged the default Perceptron tagger available in Python’s
NLTK package [33].
Research Question Analysis. We use a mixed-methods strat-
egy to examine the mined/extracted data. This approach to
analyzing quantitative and qualitative data allows us to provide
representative samples from the dataset to complement our
findings. Details of our analysis are detailed in Section IV.

IV. EXPERIMENT RESULTS

In this section, we report on the findings of our experiments
by answering our RQs. The first RQ examines the volume and
types of assertion methods containing an explanation message.
The second RQ investigates the readability of these messages.
Due to space constraints, specific tables in the RQs show only
the most frequently occurring instances; the complete set is
available at: [24].

RQ1: How often do developers use messages in their assertion
methods, and in what ways are these messages related?

In the first part of this RQ, we examine the volume of
assertion methods containing an explanation message.

Our analysis of 20 projects yields 31,063 methods that
contain one or more JUnit assertions statements. However, out
of this, only 1,714 (or approximately 5.52%) methods have one
or more assertions with an explanation message. Furthermore,
when we look at the individual assertion statements, we
encounter a total of 86,321 JUnit assert methods. From
this, only 3,872 (or approximately 4.49%) assertion methods
contained an explanation message. It should be noted that while
every project in the dataset has assertions, only 11 projects
have assertions with an explanation message, with a median
of 115 assertion methods. Table I shows a statistical summary
of the occurrence of assertion methods with and without an
explanation message in each project within our dataset.

Our subsequent analysis examines the type of assertion
method frequently containing an explanation message. As
shown in Table II, the majority of the explanation messages
are contained within an assertEquals (40.34%), followed
by the assertTrue method (31.02%). Next, we examine
the common unigrams and bigrams developers utilize
when constructing a message. While we did notice that
developers utilize similar terms for assertEquals and

7https://github.com/textstat/textstat

TABLE II
DISTRIBUTION OF THE TOP FOUR ASSERTION METHOD TYPES FREQUENTLY

CONTAINING AN EXPLANATION MESSAGE.

Assertion Type Count Percentage

assertEquals 1,562 40.34%
assertTrue 1,201 31.02%
assertFalse 570 14.72%
assertNotNull 229 5.91%
Others 310 8.01%

Total 3,872 100%

TABLE III
DISTRIBUTION OF HOW ASSERT MESSAGES ARE STRUCTURED.

Category Count Percentage

String Literal 3,135 80.97%
Combination 414 10.69%
Identifier 323 8.34%

Combination
String + Variable 236 57.00%
String + Method 159 38.41%
String + Variable + Method 13 3.14%
String + Digit 6 1.45%

Identifier
Method 229 70.90%
Variable 94 29.10%

assertTrue, such as ‘should’, ‘to string’, we also did
encounter the bigram ‘does not’ frequently appearing within
assertEquals. Developers use this bigram to state that
the expected value does not match the actual value, as in the
example: assertEquals(‘‘invocation time does
not match’’, expected.getInvocationTime(),
actual.getInvocationTime()). Looking at the
frequent terms in assertNotNull, we observe the unigram
‘null’, where developers use this term to show that result
of the assertion is a null value when it should not, as in
assertNotNull(‘‘style is null’’, style).
Looking at the messages within the fail assertion method,
we encounter the terms ‘error’, ‘failed to’, and ‘not thrown’.
The fail method is typically utilized to fail a test case if an
expected exception does not occur. In other words, the success
of the test case depends on the occurrence of an exception,
as in the example: fail(‘‘Error in predicate but
not thrown!’’).

Moving on, based on our categorization of the assertion
messages (described in Section III), we observe that the
majority of these messages are composed of string literals
(3,135 instances or 80.97%), followed by a combination
of string literals and identifiers (414 instances), and iden-
tifiers (323 instances). Furthermore, when looking at the
identifier category, we observe that developers prefer using
methods over variables, where developers usually utilize the
toString() method of an object to generate the message
for the assertion, like assertEquals(map.toString(),
expected, map.size()). In contrast, the combina-
tion category shows developers preferring to use vari-

https://github.com/textstat/textstat


ables over methods in conjunction with string literals,
like assertEquals("Incorrect id: " + actual,
expected, actual). Table III shows a breakdown of the
distribution of these categories in our dataset.

Summary for RQ1. Even though assert methods are an
essential part of unit testing, most developers do not make
use of the ability to provide a message to explain the failure
of a test case. Developers frequently provide messages using
either the assertEquals and assertTrue methods.
Depending on the type of assert method used, developers
tend to use specific terminology when crafting their message.
Finally, we observe three high-level patterns developers
utilize to craft messages, with developers frequently using a
string of literals for the message.

RQ2: To what extent do developers provide easily comprehen-
sible messages in assertion methods?

In this RQ, we leverage standard English readability metrics
to determine the level of difficulty associated with compre-
hending assertion messages. Since an assertion message is
meant to assist developers in understanding the failure of the
assertion, and developers are free to compose this message
using a variety of words, it is reasonable to utilize such
metrics. Furthermore, we examine how developers structure
these messages by examining the part-of-speech tags. To this
extent, we utilize the readability models and part-of-speech
tagger described in Section III. We complement the generated
quantitative data with qualitative examples from the dataset.

Message Readability

In this part of the RQ analysis, we report on the readability
scores associated with the assert messages in our dataset. The
readability of an English sentence indicates whether or not it
contains words associated with higher education levels.

First, we look at messages composed of only string literals
(i.e., pure text messages). String literals were the most common
message type in this dataset; of the 3,872 total messages, 3,135
(80.97%) were composed of only string literals. The Flesch
reading ease median score for such messages is 77.91, and
the mode was 93.81, indicating that most messages ranged
from fairly easy to read to plain English [34]. Furthermore, as
per the Flesch-Kincaid grade level score, such text requires
a 4th-grade education level to be understood. Looking at the
structure of the messages, we observe that these messages have
a median and mean of one sentence, a median of five tokens,
and less than one polysyllabic word; such traits help with text
readability, and understandability [28].

Next, we analyze messages composed of only identifiers
(i.e., method calls or variables). Our analysis yields 323
(8.34%) messages composed of only identifiers with a Flesch
reading ease median score of 93.81 and a corresponding
grade level of less than 1 (i.e., a beginner’s knowledge of
English). These metrics, along with a median of five tokens
and less than one polysyllabic word, seem to indicate high
readability for identifier messages. However, in most cases,

the value returned by the identifier does not provide details
about why the test fails. For example, in the following assertion
assertNotNull(msg,c1, the message will be printed if
c1 is null. If the message consisted of the string “c1 should not
be null” that would be an appropriate message. Furthermore,
the message should contain c1’s type. However, we don’t know
the contents of the message. Therefore, the standard readability
indicators used are not good indicators of the readability of
identifier messages.

Moving on, our examination of the 414 (10.69%) messages
composed of a combination of text and identifiers shows
a median reading ease of 78.25 and a median reading
comprehension of a 4th-grade education level. These types
of combination messages tended to contain less than 1
polysyllable. However, due to the presence of identifiers,
combination messages tend to have a greater number of tokens
(median token count of 11). In addition, the most common types
of messages began with a string literal followed by an identifier,
such as "Expected: " + expected + ", got:" +
actual. These messages have a Flesch reading ease score of
-8.73, suggesting they are very difficult to read. Furthermore,
we observe combination messages with high Flesch reading
ease scores composed of empty strings added to an identifier
or very short sentences. For example, in assertTrue(
assertTrue("" + c, c >= 100), an empty string
is appended to an identifier and has a Flesch reading ease
score of 121.22. Additionally, assertTrue("file " +
file.getAbsolutePath() + " should exist",
file.exists()) is an example where a single word is
appended to an identifier and has a reading score of 81.29.

Finally, it should be worth noting that high readability does
not inherently indicate high understandability. For example,
single-word messages, such as ‘works’, ‘method’, and ‘found’
are easy to read (Flesch reading ease score of 121.22). However,
by themselves, these words hold little meaning in the context
of test case failure. At the same time, not all single-word
messages mean easy readability. Technology/domain terms such
as ‘Serialization’ result in negative reading scores (in this case
-217.19). Furthermore, the presence of these domain/technology
terms in longer messages also yields poor readability scores.
For instance, “Serialized and deserialized value is different”
has a Flesch reading ease score of -27.68. This shows that
standard English language readability models, which may work
well for general-purpose English prose, may not be an ideal
solution for measuring source code readability.

Message Structure

In this part of our RQ analysis, we examine the part-of-
speech tags developers utilize to construct messages. We limit
our analysis to only messages that we categorize as consisting
of only string literals. We did not analyze messages constructed
with identifiers as prior work shows that developers utilize a
different structure when naming identifiers [35], and hence
a comparison is not feasible. Table IV shows the top two
frequently occurring patterns for the first term, the first two
terms, and the first three terms in a message.



As shown in Table IV, most messages start with either
a noun (i.e., a singular noun or proper noun– 25.01% and
21.5%, respectively). Typically, in the English language,
a sentence starts with a specific subject, which is often a
noun, and is followed by a verb [36]; this aligns with our
observation of assert messages starting with a type of noun.
Examining a sample of these messages, we notice that the
noun is usually a reference to the entity under test, as in
the case of (assertFalse("File still exists
after deletion", Files.exists(symLinkP,
NOFOLLOW_LINKS))) where the test checks if a file
deletion was processed correctly. Next, looking at the first
two terms in a message, we observe that developers typically
construct messages starting with an adjective followed
by a noun, such as "Invalid number". Furthermore,
an adjective + noun structure can also be described as
a complete subject, where an adjective (also known as
noun-adjunct) describes specific details that define the subject.
A noun-adjunct is a word that is typically a noun but is being
used as an adjective [35]. Likewise, we observe a similar
pattern when examining the first three terms in a message,
where developers provide a more descriptive text.

Other patterns of interest outside of the top two patterns
mentioned in Table IV were messages that started with a verb,
namely a past participle verb. Similarly to adjectives, past
participle verbs often function in modifying or describing
a noun. So, seeing assert messages beginning with a
past-participle verb is not unusual when compared to
regular English sentences. In most cases, the starting verb
is mapped to the term ‘expected’, which is utilized in
messages about exceptions that should occur in a test
case. For example, in the assertion fail("Expected
IllegalStateException."), the term starts with a
verb and is followed by a noun that represents the type of
exception. In some cases, the antonym ‘unexpected’ was
used in a similar fashion, assertEquals("Unexpected
map size", 2, map.size())). Other starting verbs
included ‘Returned’, ‘Interpolated’, and ‘Created’ followed
by a noun referencing the entity under test, and the
modal term ‘should’, assertEquals("Returned
value should be equal to BigInteger.ONE",
BigInteger.ONE,value).

Summary for RQ2.
Existing English language readability techniques indicate
that assertion messages composed of only identifiers are
easier to read and require a beginner’s knowledge of
English. Messages composed of only string literals require
a 4th-grade education level to understand and tend to
follow a similar grammatical pattern to English sentences,
most often beginning with a subject or complete subject
(adjective/modifier + noun).

V. DISCUSSION & TAKEAWAYS

Assertion methods are an essential part of a test case.
Furthermore, to assist developers with understanding the failure

TABLE IV
COMMON PART-OF-SPEECH PATTERNS FOR TEXT-BASED MESSAGES IN AN

ASSERTION METHOD.

Part-of-Speech Pattern Count Percentage

First term in a message
Noun (singular) 784 25.01%
Proper noun (singular) 674 21.50%
Others 1,677 53.49%

First two terms in a message
Adjective, Noun (singular) 332 11.32%
Proper noun (singular), Noun (singular) 219 7.46%
Others 2,383 81.22%

First three terms in a message
Adjective, Noun (singular), Noun (singular) 81 3.14%
Adjective, Verb, Noun (plural) 73 2.83%
Others 2,429 94.04%

of a test case, these assertion methods provide developers
the opportunity to provide an optional message explaining
the failure. Therefore, these messages must be readable and
understandable to ensure developer productivity and system
quality during troubleshooting and onboarding activities. In
this study, we explore the extent to which developers utilize
messages in assertion methods and the characteristics of
these messages concerning readability. Our findings show
that although the volume of assertion methods containing
messages is low, the messages that do exist can be grouped
into one of three high-level categories. While our findings
extend the knowledge of code readability, there are avenues for
further research, including the evolution of messages and how
developers comprehend these messages. Below, we discuss how
the findings from our RQs support the community through a
series of takeaways.
Takeaway 1 - Encourage the use of messages in assertion
methods. Since assertion methods are optional, developers
rarely use the opportunity to provide a message. However,
having multiple non-documented assertions impedes trou-
bleshooting test failure and is a known, commonly occurring
test smell (i.e., Assertion Roulette) [37]–[39]. To this extent,
academia should instill in students the importance of using
messages in assertions. Additionally, static analysis and test
suite generation tools should incorporate the importance of
using messages in asserts. Finally, based on our data and
experiences during this study, the research community needs to
focus on how we can support developers in creating effective,
concise assertion messages. In other words, are there ways we
can generate messages? Are there ways of phrasing messages
that improve comprehension for different types of asserts?
Takeaway 2 - Extend the applicability of readability quality
metrics. Our RQ2 findings show that English readability
techniques consider messages composed of string literals as
descriptive and follow a fairly common grammatical structure
similar to general English prose. The heuristics we find in this
study can help code readability models, which currently do
not directly support messages within assertion methods. For
example, they should include heuristics to warn developers



against using messages composed of only digits, which is also
a test smell (i.e., Magic Number Test) [40].

Takeaway 3 - Establishment of a catalog of anti-patterns
in assert message usage. In our manual analysis of the data,
we observe instances of assert methods having messages that,
while they seem readable, are inclined to misinterpretation
due to the terminology developers use in constructing the
message. Similar to linguistic anti-patterns [41], these mistakes
or misconceptions can hinder communication or understanding.
Below we provide a summary of the anti-patterns we identified.
• Message does not say what is expected. In this anti-pattern,

the assert message written by the developer does not provide
information on why the test case fails. For example, in asse
rtEquals("values.size()",3,content.size(
)), the developer prints the string “values.size()”, instead of
a message stating why the equality test is failing. Most likely,
this specific case might have been a mistake by the developer
(maybe when debugging); instead of using a method call,
the developer enclosed an identifier within quotes.

• Message is misleading. In this anti-pattern, the meaning of
the message does not align with the intention of the test.
For example, in assertTrue("available",buffe
r.available()), the message “available” is shown if
‘buffer.available()’ returns false. Ideally, the message should
be “buffer is not available”.

• Message is too short. Understandably, this anti-pattern can
be subjective as the ideal message length differs by developer.
However, a message comprising of a single word may not
provide enough context to understand the intended meaning.
For example, in assertNull("interpolate",nam
e), the message “interpolate” does not provide adequate
details about the test’s failure. Further, using abbreviations
and acronyms in/as messages should be discouraged as
prior research on identifier naming shows that developers
have difficulty comprehending short names, including those
composed of abbreviations and acronyms [42], [43].

While these observations are interesting and further support
the fact that the quality of assert messages contributes to the
overall quality and understandability of the code, additional
studies are required to create a more formal and exhaustive set
of assert message anti-patterns.

Takeaway 4 - Construction of natural language processing
tools specific to assertion message analysis. Our use of
standard English readability metrics is an initial step in research
in this field. However, prior research has shown the importance
of using specialized natural language processing tools in
analyzing software artifacts [44], [45]. For instance, messages
containing a combination of string literals and identifiers require
preprocessing that is not straightforward, and require the use
of specialized tools/packages. Additionally, it is essential to
understand the context around its use to verify if the message
accurately reflects its intended behavior, which can be inferred
by analyzing the surrounding code [35]. Finally, even though
the English readability metrics employed in our study are
utilized in prior research, additional readability models exist

that incorporate conflicting formulas [46], further highlighting
the need for a specialized model/tool.

VI. THREATS TO VALIDITY

Even though our analysis is limited to systems utilizing
JUnit 4, other testing frameworks provide similar assertion
functionality. Additionally, these open-source systems are
utilized in published software engineering research studies.
Nevertheless, there is a threat that our findings may not
represent industry/closed-source systems. However, as this
is an exploratory study, our work provides a starting point
for researchers to conduct comparison studies against other
systems. While we leverage well-known text readability metrics,
these models were originally constructed to analyze English
prose. That said, these same metrics have been utilized in
prior code readability studies. Our discovery of anti-patterns
in how developers craft assert messages is due to manual
analysis. Hence, there does exist the possibility of other types
of anti-patterns that we might have missed. However, as stated
before, this is an exploratory study, and our findings serve as a
starting point in understanding the ineffective ways developers
construct assert messages.

VII. CONCLUSION & FUTURE WORK

Assertion methods are a crucial element in test cases,
which developers utilize to make assertions about the state
of the system under test. To help debug test failures and
communicate the test’s purpose, developers can provide an
optional explanation message. Developers are free to compose
these messages in any manner they see fit. This study represents
an initial foray into the area of assert messages and begins
to describe if and how developers use these messages. Our
findings show that developers only sometimes include an
explanation message in their assertion method. An analysis
of these messages shows that they are either composed of
string literals, identifiers, or a combination of strings and
identifiers, with most messages comprising of string literals.
Furthermore, as part of our analysis, we report on these
messages’ readability and grammatical structure. Finally, we
also discuss assert message anti-patterns that we discovered
as part of our qualitative analysis. The discovery of these anti-
patterns is an important step forward in improving the quality
of assert messages.

Our future work in this area includes a human subject study.
In this proposed study, we will work with developers of varying
experience and skills to validate our empirical findings and
gain further insight into heuristics we can incorporate into
appraising and recommending high-quality assertion messages.
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