
Rename Chains: An Exploratory Study on the
Occurrence and Characteristics of Identifiers

Undergoing Multiple Renamings
Anthony Peruma

Information and Computer Sciences Department
University of Hawai‘i at Mānoa

Honolulu, Hawai‘i, USA
peruma@hawaii.edu

Christian D. Newman
Department of Software Engineering

Rochester Institute of Technology
Rochester, New York, USA

cnewman@se.rit.edu

Abstract—Identifier names play a significant role in program
comprehension activities, with high-quality names improving
developer productivity and system quality. To correct poor-
quality names, developers rename identifiers to reflect their
intended purpose better. However, renames do not always result
in high-quality, long-lasting names; in many cases, developers
perform multiple rename operations on the same identifier
throughout the system’s lifetime. In this paper, we report on
a large-scale empirical study that examines the occurrence of
identifiers undergoing multiple renames (i.e., rename chains).
Our findings show the presence of rename chains in almost
every project, with methods typically having more rename chains
than other identifier types. Furthermore, it is usually the same
developer responsible for creating all renames within a chain,
with most names maintaining the same grammatical structure.
Understanding rename chains can help us provide stronger
advice, and targeted research, on how to craft high-quality, long-
lasting identifiers.

I. INTRODUCTION

Be it bug fixing or updating features, program comprehension
is an essential part of any software maintenance activity [1].
Program comprehension is the act of developers reading the
code to understand its behavior in order to know where to
make updates to the source code [2]. Therefore, to ensure both
developer productivity and system quality, it is essential for
developers to craft identifiers with meaningful names. In other
words, the name should accurately reflect its intended behavior.

Research shows that identifier names account for almost 70%
of the characters in a software system’s codebase [3], with
well-constructed names improving comprehension activities
by an estimated 19% [4]. Unfortunately, there are significant
problems with many identifiers, and no generalizable methods
to measure identifier quality. This is likely part of the reason
renaming is one of the most frequent types of rework (i.e.,
refactoring) developers perform on their code base, contributing
to around 40% of the rework developers perform throughout
the lifetime of the system [5]–[7].

While Rename Refactoring is the approach developers take
to correct poor-quality names, there is no guarantee that
the resulting new name is of high quality, with developers
sometimes performing multiple rename operations to the same

identifier. For instance, let us compare the code snippets
in Listing 1 and Listing 2, both of which show multiple
renamings of a method’s name. In Listing 1, the developer
renames the method sendPacket2→sendPacket3→sy
ncedSendPacket. The original and first iteration of the
name contain digits, and this type of naming is known as a
Distinguisher [8]. Developers utilize such names to prevent
name collisions at compile time when multiple identifiers with
the same name are in the class/file. The final version of the
name, syncedSendPacket, is no longer a Distinguisher and is
more descriptive than the original. In contrast, it can be argued
that the end result of the method rename in Listing 2 does
not produce a high-quality name as println is a copy of
the statement inside the method and provides no additional
information.

Even though prior work on identifier naming examines the
lexical semantic updates developers make to a name when
performing the rename operation [5], [6], [9], [10], they fall
short of investigating how each identifier evolves throughout the
system’s entire lifetime. In other words, they do not examine
if the individual rename operations are related to each other.
Likewise, studies that propose rename opportunities in the
code do not consider the historical evolution of the identifiers
[11]–[13].

- public void sendPacket2(Packet9Respawn packet) {
+ public void sendPacket3(Packet9Respawn packet) {
- public void sendPacket3(Packet9Respawn packet) {
+ public void syncedSendPacket(Packet9Respawn packet) {

a c t i v e C h u n k s . c l e a r () ;
super . s e n d P a c k e t (p a c k e t) ;

}

Listing 1. An example of a method name undergoing multiple renames to
make it more descriptive of its purpose ([14]→[15]).

ar
X

iv
:2

30
2.

11
63

2v
2

 [
cs

.S
E

]
 2

4
Fe

b
20

23

- public void writeMessage(String message) {
+ public void info(String message) {
- public void info(String message) {
+ public void println(String message) {

sys temOut . p r i n t l n (message) ;
}

Listing 2. An example of a rename chain resulting in a weak method name;
it is just a copy of the statement within the method ([16]→[17]).

A. Goal & Research Questions

The goal of this study is to explore the evolution of identifier
names by constructing and studying the characteristics of
a chain of renames for identifiers (i.e., a rename chain).
Through the findings from our study, we aim to understand the
multiple rename refactoring operations developers perform on
an identifier that can feed into tools and techniques to better
support developers with crafting and maintaining identifiers in
their code. Therefore, we propose and answer the following
research questions (RQs):

RQ1: To what extent do identifiers undergo multiple
rename refactoring operations? This RQ reports on the
volume and types of identifiers that undergo multiple renames
during their lifetime and how frequently they occur in projects.
Knowing the popularity of rename chains in a project’s
evolution will direct us to further research in this area.
RQ2: How frequently do renames occur within a rename
chain, and who is responsible for their creation? From
this RQ, we gain insight into the developers performing the
renames in the chain and how frequently developers perform
the rename operations within the chains. By considering the
developers responsible for creating rename chains, rename
recommendation techniques can improve their accuracy and
usability.
RQ3: How do the semantics of an identifier’s name evolve
in a rename chain? This RQ analyzes the lexical-semantic
properties of the renames by comparing the part-of-speech tags
of the first and last names in the chain. Findings and heuristics
from this RQ can be incorporated into automated identifier
name appraisal and recommendation tools and techniques.
RQ4: To what extent can commit log messages help
contextualize the occurrence of rename chains? Using the
generated rename chains in our dataset, this RQ examines how
effectively commit messages can identify the specific causes
for developers to create rename chains.

B. Contribution

The main contributions from this work are as follows:
• Our results represent a significant step toward understand-

ing how an identifier’s name evolves through the project’s
lifetime. Through our discussion, we pave the way for
subsequent research to enhance our knowledge of high-
quality identifier naming, especially in automated identifier
name appraisal and recommendation tools.

• We make our dataset of rename chains, including specific
characteristics of the renames, publicly available.

II. RELATED WORK

This section discusses the work related to identifier renaming.
Broadly, these studies fall into two categories, empirical studies
that examine the semantic characteristics of names and studies
that propose rename recommendation techniques/models.

A. Empirical Studies

In a developer survey, Arnoudova et al. [9] report that
developers perform renaming as part of their implementation
workflow and admit that renaming is not straightforward.
Furthermore, the authors propose a taxonomy to classify the
types of semantic updates a name undergoes when renamed.

An empirical examination by Peruma et al. [6] of the
semantic updates developers make to a name shows that
developers frequently make simple renames by adding or
removing a single term in a name. Further, the authors also
show that developers frequently narrow the meaning of the
name. The authors also highlight specific grammar patterns
developers utilize when crafting unit test method names [10]
and produce a taxonomy of digits occurring in an identifier’s
name [8]. Additionally, as a means of contextualizing the
renames developer perform, Peruma et al. [5] show relationships
between the data type and the plurality of the name. Specifically,
the name changes from singular to plural when the data type
changes from a non-collection to a collection type. The authors
also show that specific identifier renamings tend to co-occur
with other types of refactoring operations. Further, the authors
also show that novice developers tend to perform more renames
than other types of refactoring operations [18].

B. Rename Recommendations

A model called NATURALIZE that uses statistical natural
language processing to mine and learn the style (i.e., coding
norms) of a codebase and offers renaming recommendations
are introduced by Allamanis et al. in their paper [11]. To stan-
dardize names used in related contexts, NATURALIZE learns
syntactic restrictions, or sub-grammars, on identifier names
like camelcase or underscore. The authors also recommend a
neural probabilistic language model to automatically suggest
descriptive, idiomatic method and class names [12]. An n-
gram based approach for assessing the comprehensibility of
method names and recommending intelligible method names is
introduced by Suzuki et al. [13]. The authors’ solution involves
gathering and learning method names from Java systems. The
authors employ the n-gram model to provide recommendations
to the developer and a threshold to assess the comprehensibility
score of a method’s name as part of their analysis process.
Deep learning methods are used by Liu et al. [19] to spot
incorrect method names. Their methodology retrieves in-depth
representations of method bodies and names. The model is
trained by the authors using numerous techniques from actual
projects. The name recommendation method compares the
overlap between the set of method names whose bodies are

2

close in the method body vector space and the closeness of
method names in the method name vector space.

III. EXPERIMENT DESIGN

In this section, we provide details about the methodology
for our study. Figure 1 shows a high-level overview of our
experiment, which we describe in detail below. Furthermore,
the dataset we utilize/generate in this study is available on our
project website for replication and extension purposes [20].

A. Source Dataset

In this study, we utilize an existing dataset of mined
refactoring operations made available by Peruma et al. [10]
from their research on test method name renaming and resued
by the authors in another study on identifier names [8]. The
authors of the dataset utilized RefactoringMiner [21] to mine
the refactoring operations of 800 well-engineered open-source
Java systems. RefactoringMiner is a state-of-the-art tool that
iterates through a project’s commit log mining refactoring
operations. The dataset contains mined rename refactoring
operations for classes, attributes, methods, parameters, and
variables.

B. Rename Chain Construction

Our manual analysis of the source dataset shows the presence
of auto-generated code related to projects utilizing Antlr. Since
such code could skew our findings, we first exclude such source
files from our analysis; our dataset contains the query we used
to perform the exclusion. After performing this exclusion,
we start the work of constructing the rename chain for each
identifier type, using custom scripts. Our approach involves the
use of the fully qualified name of the identifier to perform name
comparisons to form links in the chain. The general approach
involves first obtaining the refactorings for each identifier type
sorted by the author commit date for each project. Next, for
each type of identifier rename refactoring in the project, we
search for instances where the new name in the refactoring
is the old name in a subsequent rename operation. If such a
match exists, it forms a link in the chain. This process continues
recursively. Our replication package contains the code utilized
to create the chains for each identifier type.

C. Part-of-Speech Tagging

To understand the semantic change to an identifier’s name,
we utilize a specialized identifier name part-of-speech tagger
made available by Newman et al. [22]. This is a state-of-the-art
tagger that outperforms other taggers, including the Stanford
tagger [23], for identifier names. The tagger utilizes a subset
of the Penn Treebank tagset [24] and includes nouns, verbs,
noun modifiers, determiners, etc; details of which are available
at [25]. Using this tagger, we generate the part-of-speech tags
for each term in an identifier’s name for the original and last
name in the rename chain.

TABLE I
VOLUME OF MINED RENAME OPERATIONS FOR EACH IDENTIFIER TYPE.

Identifier
Type

Total Rename
Refactoring Operations Percentage

Method 84,321 29.50%
Parameter 72,972 25.53%
Variable 62,059 21.75%
Attribute 35,741 12.51%
Class 30,693 10.74%
All 285,786 100%

D. Topic Modeling

To contextualize the presence of rename chains, we perform
a topic modeling analysis utilizing the latent Dirichlet allocation
(LDA) algorithm [26]. Before performing the topic modeling
analysis, we perform a set of text preprocessing tasks on the
commit messages; we remove non-alphabet characters, such as
punctuations, set the text to lowercase, lemmatize words, and
finally, remove standard English stopwords. To arrive at the
optimal number of topics, we iteratively extracted topics from
two to ten in increments of one, where each topic execution
cycle had 100 passes and 200 iterations. We manually examined
the word frequencies present in each topic cycle to determine
the optimum topic.

E. Research Question Analysis

To answer our research questions, we follow a mixed meth-
ods approach, where we supplement our quantitative findings
with qualitative examples from our dataset. This technique helps
us understand our results through contextualization. We employ
custom scripts and database queries to answer our research
questions and elaborate on our approach when addressing each
research question in Section IV.

IV. EXPERIMENT RESULTS

In this section, we report on the findings of our experiments.
Since our work is based on the rename refactoring operations
performed on identifiers, we first present an overview of
renames in our dataset. In total, our dataset contains 285,786
rename refactorings spread across the five identifier types.
Table I shows the volume of renames by identifier type, most
of which were method renames (29.50%).

Moving on, we focus our analysis on rename chains by
answering our RQs. The first RQ examines the volume of
rename chains present in the dataset, while The second and
third RQ investigates specific characteristics of these rename
chains. Due to space constraints, specific tables in the RQs show
only the most frequently occurring instances; the complete set
is available on our project website [20].

A. RQ1: To what extent do identifiers undergo multiple rename
refactoring operations?

In this RQ, we quantitatively analyze the rename chains in
our dataset. In total, we mined 285,786 rename refactoring
operations. We then analyzed this raw data to construct rename
chains. A chain is a combination of rename operations applied

3

Clone 800

well-engineered

open-source

Java projects

Mine refactoring

operations and

 commit log
Dataset

Source dataset of rename refactorings and commit details

Rename chain

construction

Identifier name

part-of-speech

tagging
Topic modeling

Dataset of rename chains and their characteristics

Research question

analysis

Fig. 1. Overview of our experiment design.

TABLE II
VOLUME OF IDENTIFIERS WITH A SINGLE RENAME AND MULTIPLE RENAME

INSTANCES FOR EACH IDENTIFIER TYPE.

Identifier
Type

Instances with a
single rename

Instances with more than one rename
(i.e., rename chain)

Count Percentage

Class 24,221 2,933 16.85%
Attribute 31,245 2,113 12.14%
Method 72,884 5,349 30.73%
Parameter 66,015 2,925 16.81%
Variable 53,202 4,084 23.47%
All 247,567 17,404 100.00%

to a single identifier. We construct a chain if two or more
rename operations are applied to an identifier. In total, we
detected 17,404 rename chains spread across all identifier
types. In contrast, our dataset contains 247,567 identifiers
that underwent only a single rename operation and, hence
do not form a chain. A granular examination shows that,
out of all identifier types in our dataset, methods (approx.
30.73%) are most likely to have rename chains, followed
by variables (approx. 23.47%), classes (16.85%), parameters
(approx. 16.81%), and attributes (approx. 12.14%). Table II
provides an overview of the mined rename chains.

Moving on, we focus on the number of rename operations
that form a rename chain. Overall, an identifier rename chain
contains a median of 2 and an average of 9 rename instances.
On a granular level, we observe that classes, attributes, methods,
and parameters have a median of two renames in their chains,
while variables have three rename instances. Table III shows
a statistical summary of the number of rename instances for
each identifier type in their rename chain.

Finally, while our dataset contains 798 projects having
rename refactorings, 668 (or 83.71%) of these projects contain
rename chains. Looking at the volume of rename chains within
these projects, we observe that projects have a median of nine
and a mean of 26.05 identifiers undergoing multiple renames.

TABLE III
STATISTICAL SUMMARY OF THE NUMBER OF RENAME INSTANCES

ASSOCIATED WITH EACH TYPE OF IDENTIFIER.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Class
2 2 2 2.23 2 7

Attribute
2 2 2 2.16 2 6

Method
2 2 2 2.17 2 8

Parameter
2 2 2 2.49 2 53

Variable
2 2 3 31.09 55 143

Summary for RQ1. Though rename operations are prevalent
in the implementation and maintenance of software systems,
most identifiers typically undergo a single rename throughout
their lifetime. However, rename chains are present in
most systems. Method names typically undergo multiple
renamings and typically contain around two renames in their
rename chain. Variables, on the other hand, undergo around
three renamings.

B. RQ2: How frequently do renames occur within a rename
chain, and who is responsible for their creation?

In the prior RQ, we show the occurrence of rename chains in
the evolution of the code base of a software system. Moving on,
this RQ examines the renames occurring within these chains.
More specifically, we investigate the interval duration between
the renames in the chains and the developers performing these
renames. The findings from this RQ help us better understand
the characteristics of rename chains.
Interval Analysis

This analysis examines the interval (i.e., time duration)
between renames in chains having two or more rename
instances. An overall examination of the median number of
days between renames shows that the renames occur two days
apart. Next, in a more granular examination, we observe that
attributes have a median of 25 days, followed by classes having

4

19 days, methods with 14 days, parameters with seven days,
and variables having two days between renames in the chain.

Our subsequent examination looks at the interval between
the first and last rename in the chain. Parameters have the
lowest interval with a median of 17 days between the first and
last rename. In contrast, variables have the longest of 357 days
between the first and last rename in the chain. Finally, classes,
attributes, and methods have an interval of 32, 35, and 22 days,
respectively.
Developer Analysis

In this analysis, we investigate who performs the renames
involved in the rename chain. To this extent, we utilize the email
address associated with the commit containing the rename (i.e.,
git author email). Prior studies have used the email address
to determine unique developers, including those that examine
identifier renaming [5]. Our analysis is on chains having two
or more rename instances.

First, the same developer performs just over half of the
rename chains (i.e., 10,799 or 62.05% instances). Next, fo-
cusing on the chains having multiple developers, we observe
that 760 or 11.51% of instances have a different developer
performing the first and last rename in the chain. Furthermore,
these multi-developer chains have a median and average of
approximately two unique developers performing the renames
in the chain. At a more granular level, attribute chains have the
most developers involved in the rename process, with a median
of four developers, followed by variables with a median of three.
Class and method chains have a median of two developers
performing the renames in their respective chains.

Summary for RQ2. Rename chains are typically con-
structed with rename refactoring operations that occur days
apart, with variables typically having the shortest duration
(approx. two days) and attributes the longest. Furthermore,
rename chains are usually constructed by the same developer.
Finally, multi-developer chains usually involve two develop-
ers, with the construction of attribute chains involving more
developers than other identifier rename chains.

C. RQ3: How do the semantics of an identifier’s name evolve
in a rename chain?

This RQ continues our analysis of the evolution of renames
chains by examining the lexical-semantic structure of the
identifier names in the chain. Our analysis includes examining
the part-of-speech tags instead of the semantics of actual word
since the tags are more constrained and leave less room for
misinterpretation. Furthermore, prior work has shown that
developers utilize specific grammatical patterns when crafting
identifier names [27]. To this extent, we utilize a specialized
ensemble tagger for identifier names ([22]) to generate the
part-of-speech tags for the words in an identifiers name.

Since a chain can be composed of a varying number of
renames, comparing and analyzing each and every rename
within the chain is not feasible. Hence, we limit our analysis
to the first and last rename in the chain. In other words, we
compare the name of the identifier before the first rename and

the name of the identifier after the final rename. Our analysis
shows that 7,266 or 41.75% rename chains have the same
part-of-speech pattern for the original and final name.

Next, we examine the common part-of-speech patterns
utilized for the original and final names for each identifier
type. Shown in Table IV are the top three widely used part-of-
speech tags for the original and final name for each identifier
type. From this table, we observe that the majority of the
commonly used part-of-speech tags for both names are the
same. For example, in the class rename chain TestServl
et→TheTestServlet→TestServlet ([28]→[29]), the
part-of-speech pattern starts with NM—N, then changes to
DT—NM—N when the developer prepends the determiner
“The” to the name, before finally reverting the name structure
to NM—N. The complete set of part-of-speech patterns are
available in our shared dataset.

Furthermore, it is encouraging to note that developers utilize
standard naming structures when crafting names for identifiers
[27]. From Table IV, we can see that classes, attributes,
parameters, and variables begin with either a noun/noun-plural
(N/NPL) or noun modifier (NM), while methods start with
a verb (V). Additionally, we also observe instances where
developers correct poorly structured names. For example, in
the attribute rename chain setToValue→groupName→g
roupNameTextArea ([30]→[31]), the original name starts
with a verb (i.e., “set”), which is generally incorrect for an
attribute. However, within the chain, the developer changes the
name to start with a noun modifier

A high-level examination of the words making up the name
in the identifiers shows that there are 7,584 instances where
the original and final names contain an equal number of words.
Further, our dataset contains 3,901 chains with identical original
and final names. Additionally, we encounter 38 rename chains
where the only difference between the names is a change in
the case (e.g., experimentEngine→junkEngine→Ex
perimentEngine [32]→[33]) and seven chains where the
difference is a removal/addition of punctuation(s) (e.g., _loc
ator→loader→locator [34]→[35]).

Summary for RQ3. There are numerous instances where
even though the words in an identifier’s name change, the
grammatical structure of the initial and last name in the
chain remains the same. Furthermore, developers frequently
follow well-established identifier naming structures when
crafting names.

D. RQ4: To what extent can commit log messages help
contextualize the occurrence of rename chains?

While the prior RQs examine the occurrence and character-
istics of rename chains, we need to understand why developers
create these chains. Since surveying all the developers respon-
sible for creating chains in our dataset is not feasible, this RQ
performs an automated analysis of the commit log messages
associated with commits that form rename chains. We analyze
the commit message from the second rename onwards for each
rename chain (i.e., two or more renames) as the second rename

5

TABLE IV
COMMON PART-OF-SPEECH PATTERNS ASSOCIATED WITH THE ORIGINAL

AND FINAL NAME IN THE RENAME CHAIN FOR EACH IDENTIFIER TYPE.

Part-of-Speech
Pattern Count Percentage

Original Name Final Name

Class
NM—NM—N NM—NM—N 309 11.74%
NM—N NM—N 216 8.20%
NM—NM—NM—N NM—NM—NM—N 172 6.53%

Other Patterns 1,936 73.53%

Attribute
NM—N NM—N 285 13.87%
N N 231 11.24%
NM—NM—N NM—NM—N 105 5.11%

Other Patterns 1,434 69.78%

Method
V—NM—N V—NM—N 401 9.65%
V—N V—N 273 6.57%
V V 217 5.22%

Other Patterns 3,266 78.57%

Parameter
N N 804 27.94%
NM—N NM—N 500 17.37%
N NM—N 216 7.51%

Other Patterns 1,358 47.19%

Variable
N N 1,202 32.93%
NPL N 617 16.90%
NM—N NM—N 252 6.90%

Other Patterns 1,579 43.26%

indicates the start of the rename chain. In our analysis, we
perform a topic modeling analysis utilizing the LDA algorithm,
as described in Section III. The results of our LDA analysis
yield three distinct topics associated with these messages –
Code Cleanup, Refactoring, and Bug Fix/Testing.

The Code Cleanup topic includes words such as ‘renaming’,
‘naming’, ‘convention’, ‘cleanup’, and ‘whitespace’, where
the renames in the chain are due to the developer improving
code style quality by adhering to standards, which includes
following naming standards. For example, in the chain my
FilenameFilter→libFilenameFilter→LibFile
nameFilter ([36]→[37]), the renaming of libFilenam
eFilter→LibFilenameFilter is associated with the
message “Lots of fixes using Checkstyle - Fixed some names
to follow conventions...”.

The Refactoring topic includes words such as ‘refactor’,
‘revert’, ‘updated’, ‘changed’, ‘removed, and ‘add’. These
commits are associated with developers updating the code
related to the behavior and design of the system. For example,
the commit message of last rename in the chain: KenyaEm
rConfigurator→KenyaEmrModelConfigurator→
EmrModelConfigurator ([38]→[39]) is “Major refactor
to start process of eventually moving content manager classes
into separate module. For now they are moved to a different
subpackage but remain in the KenyaEMR module until all
dependencies on KenyaEMR are removed”.

Finally, the Bug Fix/Testing topic is associated with the

words ‘fix’, ‘bug’, ‘test’, and ‘testcase’. In these instances, the
renames are part of either a bug fix developers perform or
are part of unit testing. However, we do notice that usually,
the messages are not very descriptive. For example, the last
message in the chain result→dependencies→cal
c ([40]→[41]) is “fixed bug with searching for transitive
dependencies + added test for it”.

The topics yielded from our analysis are at a high level.
While they show the actions causing the rename, further insight
into why the developer utilized a specific word for the rename
or how the name is related to the action or code is challenging
due to the nature of commit messages.

Summary for RQ4. A topic modeling analysis on the
rename chain commit messages shows the renames are
related to Code Cleanup, Refactoring, and Bug Fix/Testing.
However, these topics are at a high-level due to the nature
of commit messages.

V. THREATS TO VALIDITY

Even though the projects are limited to Java systems and
might not necessarily generalize to systems written in other
languages, these systems follow software engineering best
practices and have been utilized in similar research on identifier
names. Likewise, our methodology utilizes specific tools, such
as RefactoringMiner and the part-of-speech tagger, which pose
a risk because they could not be entirely accurate. These
tools, however, are well-known and state-of-the-art in their
respective domain and employed in similar work. Even though
our construction of rename chains is limited to identifiers
renamed within the same class, our results still yield a large
number of chains. In RQ2, we utilize the commit author email
to identify individual developers. While this can introduce
threats to the study, manually verifying our dataset’s large
volume of emails is not feasible. Furthermore, as mentioned
in RQ2, emails for identifying developers have been used in
prior work.

VI. DISCUSSION & CONCLUSION

Interpreting identifier names form the backbone of any code
comprehension task. However, with developers free to craft
names using words of their choosing, they introduce the threat
of having names that do not accurately reflect their behavior
(i.e., names of poor quality), which hinders the maintenance
of the system. To correct such poor-quality names, developers
rename them, which can continue throughout the system’s
lifetime. In this study, our analysis of multiple renames applied
to a single identifier (i.e., rename chain) shows that almost all
projects exhibit this phenomenon, with an average chain size of
two renames. Furthermore, we report on characteristics such as
the interval between renames, developers responsible for chain
construction, and grammatical changes. While our findings
extend the knowledge in identifier naming, there are avenues
for further research, including expanding on our RQ4 analysis
to study the motivation and contextualization for the occurrence

6

of rename chains. Below, we discuss how the findings from
our RQs support the community through a series of takeaways.

Takeaway 1 - Reliance on part-of-speech patterns when
crafting and evaluating names. From RQ3, we observe that
part-of-speech tags are an efficient means of studying the
semantic updates a name undergoes when renamed. This finding
shows that academia and practitioners should not focus only on
the words in a name but also consider the grammatical structure
of the name when crafting and evaluating identifier names.
Additionally, this also presents the research/vendor community
with an opportunity to construct rename recommendation tools
that incorporate the name’s grammatical structure in addition
to the existing features they utilize.

Takeaway 2 - Improvements to name recommendations
and appraisal techniques. In addition to incorporating the
grammatical structure, identifier name recommendation and
appraisal techniques should also consider the historical evolu-
tion of an identifier’s name in the evaluation process. Current
techniques usually consider the styling and features present in
the version of the code base under analysis. By examining the
historical evolution of the name, the likelihood of overreliance
on outliers is greatly reduced.

Takeaway 3 - Emphasis on the importance of using
high-quality names. Academia should instill in students the
importance of having high-quality names in the source code.
For example, our dataset shows the use of abbreviations and
acronyms in forming identifier names. Such tokens are known
to impede code comprehension [4], [42]. Specifically, the initial
versions of the attribute rename chain: TEMP_TUNNEL_ID→
TUNNEL_ID→TUNNEL_IDENTIFIER have a generic word,
‘TEMP’, and an abbreviation, ‘ID’, which are corrected in the
final version of the name. Finally, in addition to using static
analysis tools to detect poor programming practices, such as
code and test smells [43], [44], there should also be a focus on
using tools that evaluate the quality of names, such as linguistic
anti-patterns [45], [46].

Takeaway 4 - Challenges with the automated contextual-
ization of rename chains. Even though our attempts, in RQ 4,
at contextualizing the occurrence of rename chains using the
messages in the commit log yielded topics, these topics are
at a high level. They are insufficient in helping us understand
how the changed words in the identifier’s name are related to
the code or developer activity/task. This shows the need for
more specialized natural language processing techniques and
also the analysis of other software engineering artifacts.

A. Future Work

Our future work in this area includes a human subject study.
In this proposed study, we will work with developers of varying
experience and skills to validate our empirical findings and
expand our knowledge on understanding the rationale for the
presence of rename chains in projects. Further, we plan to
discover additional heuristics we can incorporate into appraising
and recommending high-quality identifier names.

REFERENCES

[1] V. Rajlich and N. Wilde, “The role of concepts in program compre-
hension,” in Proceedings 10th International Workshop on Program
Comprehension, pp. 271–278, 2002.

[2] A. Von Mayrhauser and A. M. Vans, “Program comprehension during
software maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44–55,
1995.

[3] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Software
Quality Journal, vol. 14, pp. 261–282, Sep 2006.

[4] J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names take
longer to comprehend,” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 217–227,
2017.

[5] A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman,
“Contextualizing rename decisions using refactorings, commit messages,
and data types,” Journal of Systems and Software, vol. 169, p. 110704,
2020.

[6] A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, An
Empirical Investigation of How and Why Developers Rename Identifiers,
p. 26–33. New York, NY, USA: Association for Computing Machinery,
2018.

[7] A. Peruma, C. D. Newman, M. W. Mkaouer, A. Ouni, and F. Palomba,
An Exploratory Study on the Refactoring of Unit Test Files in Android
Applications, p. 350–357. New York, NY, USA: Association for
Computing Machinery, 2020.

[8] A. Peruma and C. D. Newman, “Understanding digits in identifier names:
An exploratory study,” in 2022 IEEE/ACM 1st International Workshop
on Natural Language-Based Software Engineering (NLBSE), pp. 9–16,
2022.

[9] V. Arnaoudova, L. M. Eshkevari, M. D. Penta, R. Oliveto, G. Antoniol,
and Y.-G. Guéhéneuc, “Repent: Analyzing the nature of identifier
renamings,” IEEE Transactions on Software Engineering, vol. 40, no. 5,
pp. 502–532, 2014.

[10] A. Peruma, E. Hu, J. Chen, E. A. AlOmar, M. W. Mkaouer, and
C. D. Newman, “Using grammar patterns to interpret test method name
evolution,” in 2021 IEEE/ACM 29th International Conference on Program
Comprehension (ICPC), pp. 335–346, 2021.

[11] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural coding
conventions,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2014.

[12] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, (New York,
NY, USA), pp. 38–49, ACM, 2015.

[13] T. Suzuki, K. Sakamoto, F. Ishikawa, and S. Honiden, “An approach
for evaluating and suggesting method names using n-gram models,”
in Proceedings of the 22nd International Conference on Program
Comprehension, ICPC 2014, (New York, NY, USA), p. 271–274,
Association for Computing Machinery, 2014.

[14] “src/org/getspout/spout/spoutnetserverhandler.java.” https://github.com/
spoutcraft/spoutcraftplugin/commit/fe9dbcd.

[15] “src/org/getspout/spout/spoutnetserverhandler.java.” https://github.com/
spoutcraft/spoutcraftplugin/commit/6aca090.

[16] “surefire/report/defaultdirectconsolereporter.java.” https://github.com/
apache/maven-surefire/commit/b55a105.

[17] “surefire/report/defaultdirectconsolereporter.java.” https://github.com/
apache/maven-surefire/commit/6a79127.

[18] A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, “Contex-
tualizing rename decisions using refactorings and commit messages,” in
2019 19th International Working Conference on Source Code Analysis
and Manipulation (SCAM), pp. 74–85, 2019.

[19] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim,
and Y. Le Traon, “Learning to spot and refactor inconsistent method
names,” in Proceedings of the 40th International Conference on Software
Engineering, ICSE 2019, (New York, NY, USA), ACM, 2019.

[20] “Dataset.” https://doi.org/10.5281/zenodo.7672274.
[21] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and

D. Dig, “Accurate and efficient refactoring detection in commit history,”
in Proceedings of the 40th International Conference on Software
Engineering, ICSE ’18, (New York, NY, USA), p. 483–494, Association
for Computing Machinery, 2018.

7

https://github.com/spoutcraft/spoutcraftplugin/commit/fe9dbcd
https://github.com/spoutcraft/spoutcraftplugin/commit/fe9dbcd
https://github.com/spoutcraft/spoutcraftplugin/commit/6aca090
https://github.com/spoutcraft/spoutcraftplugin/commit/6aca090
https://github.com/apache/maven-surefire/commit/b55a105
https://github.com/apache/maven-surefire/commit/b55a105
https://github.com/apache/maven-surefire/commit/6a79127
https://github.com/apache/maven-surefire/commit/6a79127
https://doi.org/10.5281/zenodo.7672274

[22] C. D. Newman, M. J. Decker, R. Alsuhaibani, A. Peruma, M. Mkaouer,
S. Mohapatra, T. Vishoi, M. Zampieri, T. Sheldon, and E. Hill, “An
ensemble approach for annotating source code identifiers with part-of-
speech tags,” IEEE Transactions on Software Engineering, pp. 1–1,
2021.

[23] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich part-
of-speech tagging with a cyclic dependency network,” in Proceedings of
the 2003 Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics, pp. 252–259,
2003.

[24] M. A. Marcinkiewicz, “Building a large annotated corpus of english:
The penn treebank,” Using Large Corpora, vol. 273, 1994.

[25] “Scanl - identifier name structure catalogue.” https://github.com/
SCANL/identifier name structure catalogue#tagset.

[26] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[27] C. D. Newman, R. S. AlSuhaibani, M. J. Decker, A. Peruma, D. Kaushik,
M. W. Mkaouer, and E. Hill, “On the generation, structure, and semantics
of grammar patterns in source code identifiers,” Journal of Systems and
Software, vol. 170, p. 110740, 2020.

[28] “examples/server/thetestservlet.java.” https://github.com/resty-gwt/
resty-gwt/commit/01ae3ac.

[29] “examples/server/testservlet.java.” https://github.com/resty-gwt/resty-gwt/
commit/189f04d.

[30] “wizard/add/data/dataintegrationcriteriadialog.java.” https://github.com/
gitools/gitools/commit/72eaeb7.

[31] “wizard/add/data/dataintegrationcriteriadialog.java.” https://github.com/
gitools/gitools/commit/6ed2f62.

[32] “src/com/jgaap/backend/junkengine.java.” https://github.com/evllabs/
jgaap/commit/1f95c00.

[33] “src/com/jgaap/backend/experimentengine.java.” https://github.com/
evllabs/jgaap/commit/ccd18a8.

[34] “src/main/java/org/scribble2/cli/clijob.java.” https://github.com/scribble/
scribble-java/commit/1dbfed2.

[35] “src/main/java/org/scribble2/cli/clijob.java.” https://github.com/scribble/
scribble-java/commit/ecd98c1.

[36] “Lateralgm/org/lateralgm/resources/library/libmanager.java.”
https://github.com/ismavatar/lateralgm/commit/c31cd41.

[37] “Lots of fixes using checkstyle · ismavatar/lateralgm@c4ab35e.” https:
//github.com/ismavatar/lateralgm/commit/c4ab35e.

[38] “kenyaemr/kenyaemrmodelconfigurator.java.” https://github.com/i-tech/
openmrs-module-kenyaemr/commit/ae9f7aa.

[39] “kenyaemr/emrmodelconfigurator.java.” https://github.com/i-tech/
openmrs-module-kenyaemr/commit/673931a.

[40] “jetbrains/pluginverifier/misc/dependenciescache.java.” https:
//github.com/jetbrains/intellij-plugin-verifier/commit/ea71d3c.

[41] “jetbrains/pluginverifier/misc/dependenciescache.java.” https:
//github.com/jetbrains/intellij-plugin-verifier/commit/ea71d3c.

[42] A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and
M. Beigl, “Descriptive compound identifier names improve source code
comprehension,” in 2018 IEEE/ACM 26th International Conference on
Program Comprehension (ICPC), pp. 31–3109, 2018.

[43] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, “A review-
based comparative study of bad smell detection tools,” in Proceedings
of the 20th International Conference on Evaluation and Assessment in
Software Engineering, EASE ’16, (New York, NY, USA), Association
for Computing Machinery, 2016.

[44] W. Aljedaani, A. Peruma, A. Aljohani, M. Alotaibi, M. W. Mkaouer,
A. Ouni, C. D. Newman, A. Ghallab, and S. Ludi, “Test smell detection
tools: A systematic mapping study,” in Evaluation and Assessment in
Software Engineering, EASE 2021, (New York, NY, USA), p. 170–180,
Association for Computing Machinery, 2021.

[45] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:
what they are and how developers perceive them,” Empirical Software
Engineering, vol. 21, pp. 104–158, Feb 2016.

[46] A. Peruma, V. Arnaoudova, and C. D. Newman, “Ideal: An open-source
identifier name appraisal tool,” in 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 599–603, 2021.

8

https://github.com/SCANL/identifier_name_structure_catalogue#tagset
https://github.com/SCANL/identifier_name_structure_catalogue#tagset
https://github.com/resty-gwt/resty-gwt/commit/01ae3ac
https://github.com/resty-gwt/resty-gwt/commit/01ae3ac
https://github.com/resty-gwt/resty-gwt/commit/189f04d
https://github.com/resty-gwt/resty-gwt/commit/189f04d
https://github.com/gitools/gitools/commit/72eaeb7
https://github.com/gitools/gitools/commit/72eaeb7
https://github.com/gitools/gitools/commit/6ed2f62
https://github.com/gitools/gitools/commit/6ed2f62
https://github.com/evllabs/jgaap/commit/1f95c00
https://github.com/evllabs/jgaap/commit/1f95c00
https://github.com/evllabs/jgaap/commit/ccd18a8
https://github.com/evllabs/jgaap/commit/ccd18a8
https://github.com/scribble/scribble-java/commit/1dbfed2
https://github.com/scribble/scribble-java/commit/1dbfed2
https://github.com/scribble/scribble-java/commit/ecd98c1
https://github.com/scribble/scribble-java/commit/ecd98c1
https://github.com/ismavatar/lateralgm/commit/c31cd41
https://github.com/ismavatar/lateralgm/commit/c4ab35e
https://github.com/ismavatar/lateralgm/commit/c4ab35e
https://github.com/i-tech/openmrs-module-kenyaemr/commit/ae9f7aa
https://github.com/i-tech/openmrs-module-kenyaemr/commit/ae9f7aa
https://github.com/i-tech/openmrs-module-kenyaemr/commit/673931a
https://github.com/i-tech/openmrs-module-kenyaemr/commit/673931a
https://github.com/jetbrains/intellij-plugin-verifier/commit/ea71d3c
https://github.com/jetbrains/intellij-plugin-verifier/commit/ea71d3c
https://github.com/jetbrains/intellij-plugin-verifier/commit/ea71d3c
https://github.com/jetbrains/intellij-plugin-verifier/commit/ea71d3c

	I Introduction
	I-A Goal & Research Questions
	I-B Contribution

	II Related Work
	II-A Empirical Studies
	II-B Rename Recommendations

	III Experiment Design
	III-A Source Dataset
	III-B Rename Chain Construction
	III-C Part-of-Speech Tagging
	III-D Topic Modeling
	III-E Research Question Analysis

	IV Experiment Results
	IV-A RQ1: To what extent do identifiers undergo multiple rename refactoring operations?
	IV-B RQ2: How frequently do renames occur within a rename chain, and who is responsible for their creation?
	IV-C RQ3: How do the semantics of an identifier's name evolve in a rename chain?
	IV-D RQ4: To what extent can commit log messages help contextualize the occurrence of rename chains?

	V Threats To Validity
	VI Discussion & Conclusion
	VI-A Future Work

	References

